Cho đường thẳng
. Giao điểm của d với trục tung là:
A.
B.
C.
D.
Cho đường thẳng d: y = 3 x - 1 2 . Giao điểm của d với trục tung là:
A. A 1 6 ; 0
B. B 0 ; 1 2
C. C 0 ; − 1 6
D. D 0 ; − 1 2
Giao điểm của đường thẳng d và trục tung có hoành độ x = 0 . Thay x = 0 vào phương trình y = 3 x - 1 2 . Ta được y = 3 . 0 - 1 2 = 1 2
Vậy tọa độ giao điểm cần tìm là D 0 ; − 1 2
Đáp án cần chọn là: D
Cho đường thẳng d: y = 2x + 6. Giao điểm của d với trục tung là:
A. P 0 ; 1 6
B. N (6; 0)
C. M (0; 6)
D. D (0; −6)
Giao điểm của đường thẳng d và trục tung có hoành độ x = 0 . Thay x = 0 vào phương trình y = 2 x + 6. Ta được y = 2 . 0 + 6 = 6
Vậy tọa độ giao điểm cần tìm là M (0; 6)
Đáp án cần chọn là: C
Cho đường thẳng d : y = 3 x - 1 2 . Giao điểm của với trục tung là:
A. A 1 6 ; 0
B. B 0 ; 1 2
C. C 0 ; - 1 6
D. D 0 : - 1 2
Cho đường thẳng d : y = 3 x - 1 2 . Giao điểm của với trục tung là:
A. A 1 6 ; 0
B. B 0 ; 1 2
C. C 0 ; - 1 6
D. D 0 ; - 1 2
Cho 2 đường thẳng (d): y=2x+3 và (d''): y=-x+2. Đường thẳng (d'') song song với trục Ox và cắt trục tung tại điểm có tung đooj bằng 2. Tìm giao điểm của (d'') và (d) với (d').
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và đường thẳng (d): y = 2x + m (m là tham số).
b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).
b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi
Khi đó 2 nghiệm của phương trình là:
Kẻ BB' ⊥ OM ; AA' ⊥ OM
Ta có:
S A O M = 1/2 AA'.OM ; S B O M = 1/2 BB'.OM
Theo bài ra:
Do m > 0 nên m = 8
Vậy với m = 8 thì thỏa mãn điều kiện đề bài.
Cho đường thẳng d : y = − 2 x – 4 . Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Tính diện tích tam giác OAB.
A. 2
B. 4
C. 3
D. 8
A (x; 0) là giao điểm của d với trục hoành nên 0 = − 2 x ⇔ x = − 2 ⇒ A ( − 2 ; 0 )
B (0; y) là giao điểm của d với trục tung nên y = − 2 . 0 – 4 ⇔ y = − 4 ⇒ B ( 0 ; − 4 )
Suy ra O A = | − 2 | = 2 ; O B = | − 4 | = 4
Vì tam giác )AB vuông tại O nên S O A B = O A . O B 2 = 2.4 2 = 4 (đvdt)
Đáp án cần chọn là: B
Cho đường thẳng d: y = − 3 x + 2 . Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Tính diện tích tam giác OAB.
A. 4 3
B. − 2 3
C. 3 2
D. 2 3
B (x; 0) là giao điểm của d với trục hoành nên 0 = − 3 x + 2 ⇔ x = 2 3 B 2 3 ; 0
A (0; y) là giao điểm của d với trục tung nên y = − 3 . 0 + 2 ⇔ y = 2 ⇒ A ( 0 ; 2 )
Suy ra O A = | 2 | = 2 ; O B = 2 3 = 2 3
Vì tam giác OAB vuông tại O nên SOAB = O A . O B 2 = 2. 2 3 2 = 2 3 (đvdt)
Đáp án cần chọn là: D
Cho (d):y=-x+2 vaà (d'):y=2x-4
1. Vẽ 2 đường thẳng trên cùng 1 mặt phẳng tọa độ
2. Gọi B là giao điểm của (d) với trục trung, C là giao điểm của (d') với trục tung. Tính diện tích tam giác ABC
1:
2:Sửa đề: Gọi A là giao điểm của (d) với (d')
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)
Tọa độ C là
\(\left\{{}\begin{matrix}x=0\\y=2\cdot x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0-4=-4\end{matrix}\right.\)
Vậy: C(0;-4); B(0;2)
Tọa độ A là:
\(\left\{{}\begin{matrix}-x+2=2x-4\\y=2x-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-3x=-6\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\cdot2-4=0\end{matrix}\right.\)
Vậy: A(2;0)
A(2;0); B(0;2) C(0;-4)
\(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)
\(AC=\sqrt{\left(0-2\right)^2+\left(-4-0\right)^2}=\sqrt{2^2+4^2}=2\sqrt{5}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-4-2\right)^2}=6\)
Xét ΔABC có
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(=\dfrac{8+20-36}{2\cdot2\sqrt{2}\cdot2\sqrt{5}}=\dfrac{-\sqrt{10}}{10}\)
=>\(sinBAC=\sqrt{1-cos^2BAC}=\sqrt{1-\dfrac{1}{10}}=\sqrt{\dfrac{9}{10}}=\dfrac{3}{\sqrt{10}}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot2\sqrt{2}\cdot2\sqrt{5}\cdot\dfrac{3}{\sqrt{10}}=6\)