Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Châu Nguyễn
Xem chi tiết
Thanh Hoàng Thanh
9 tháng 3 2022 lúc 18:12

undefinedundefinedundefined

phu nguyen
Xem chi tiết
Đinh Phương Nga
25 tháng 3 2016 lúc 21:51

Ta có \(\frac{AB}{AC}=\frac{BD}{CD}\)

\(\frac{Sabd}{Sacd}=\frac{BD}{CD}\) vì có chung đường cao hạ từ A

còn BC thì dùng pitago là xong

Đinh Phương Nga
25 tháng 3 2016 lúc 21:56

do \(\frac{AB}{AC}=\frac{BD}{CD}\Rightarrow\frac{AB}{AB+AC}=\frac{BD}{BC}\)

đến đây bạn chỉ cần thay số vào rồi tính là ra BD và DC

Đinh Phương Nga
25 tháng 3 2016 lúc 22:03

ta CM tam giác ABH đồng dạng với tam giác CAH ( g.g)

\(\Rightarrow\frac{AH}{BH}=\frac{HC}{AH}\Rightarrow AH^2=HC.BH\)

đến dây bạn chỉ cần thay những giá trị tính đc vào là xong

Châu Thành Nhân
Xem chi tiết
Huy 8a2
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2024 lúc 13:31

loading...

loading...

Huy 8a2
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2024 lúc 13:22

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó;ΔHBA~ΔABC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{12}=\dfrac{CD}{16}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=3\cdot\dfrac{20}{7}=\dfrac{60}{7}\left(cm\right);CD=4\cdot\dfrac{20}{7}=\dfrac{80}{7}\left(cm\right)\)

c: Ta có: \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)

=>\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

d: Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có DE//AB

nên \(\dfrac{CD}{CB}=\dfrac{DE}{AB}\)

=>\(\dfrac{DE}{12}=\dfrac{80}{7}:20=\dfrac{4}{7}\)

=>\(DE=12\cdot\dfrac{4}{7}=\dfrac{48}{7}\left(cm\right)\)

Nguyễn Mỹ
Xem chi tiết
thanh tú
Xem chi tiết
thanh tú
Xem chi tiết
Nguyễn Ngọc Huy Toàn
2 tháng 3 2022 lúc 16:16

a. Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)

Áp dụng t/c tia phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)

\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)

\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)

Xét tam giác ABD và tam giác ADE có:

\(\widehat{E}=\widehat{D}=90^0\)

AD: cạnh chung

\(\widehat{BAD}=\widehat{DAE}\) ( gt )

=> tam giác ABD = tam giác ADE ( c.g.c )

=> BD = ED = \(\dfrac{45}{7}cm\)

b. Xét tam giác ABD và tam giác ABC, có:

\(\widehat{BAC}=\widehat{BDA}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)

\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)

\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)

\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)

\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)

\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)

 

 

 

 

 

 

 

 

Lê Đức Giang
Xem chi tiết