Cho tam giác nhọn ABC ( AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA
lấy điểm D sao cho MA = MD. Chứng minh rằng tam giác ABM = tam giác DCM . Từ đó suy ra AB = CD
cho tam giác nhọn ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh rằng tam giác ABM bằng tam giác DCM. Từ đó suy ra AB= CD.
b) Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm E sao cho HA=HE. Chứng minh rằng BE=CD.
c) Gọi I là trung điểm của ED. Tính số đo MID.
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Cho tam giác ABC có AB=AC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh: tam giác ABM=tam giác ACM. b) Chứng minh: tam giác ABM=tam giác DCM. Từ đó suy ra:AB//DC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
DO đó: ΔABM=ΔACM
b: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
Cho tam giác ABC vuông tại A có AM là trung tuyến. Trên tia đối của tia MA, lấy điểm D sao cho MA = MD
a) CM : tam giác ABM = DCM. Từ đó suy ra AB // CD
b) Gọi K là trung điểm AC. Chứng minh tam giác ABK = DCK
c) Gọi N là giao điểm của AM và BK, I là giao điểm của KD và BC. Cm tam giác KNI cân
Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a. Chứng minh: tam giác ABM=tam giác DCM
b. Chứng minh: AC=BD
c. Chứng minh AB//CD
a) Xét \(\Delta ABMvà\Delta DCMcó:\)
MB=MC
góc AMB=góc CMD
MA=MD
\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)
b) Xét \(\Delta AMCvà\Delta BMDcó:\)
MC=MB
góc AMC=góc BMD
MA=MD
\(\Rightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)
\(\Rightarrow AC=BD\)(cặp cạnh tương ứng)
c) Theo a), \(\Delta ABM=\Delta DCM\Rightarrow\)góc ABM=góc DCM (cặp góc tương ứng)
Mà 2 này tạo với BC hai góc so le trong nên AB//CD
Cho tam giác ABC có AB = AC,gọi M là trung điểm của BC. a)Chứng minh:∆ABM = ∆ACM. b)Trên tia đối của tia MA lấy điểm D sao cho MA = MD.Chứng minh:∆ABM = ∆DCM và AB//CD. c)Chứng minh tam giác ABM vuông tại M
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
DO đó: ABDC là hình bình hành
Suy ra: AB//CD
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC
Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a. Chứng minh: tam giác ABM=tam giác DCM
b. Chứng minh: AC=BD
c. Chứng minh AB//CD
a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AC=BD
c: ABDC là hình bình hành
=>AB//DC
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.
a: AC=căn 5^2-3^2=4cm
b: Xét ΔMAB và ΔMCD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD
c: AB+BC=CD+BC>DB=2BM(ĐPCM)