Xét \(\Delta\) ABM và \(\Delta\) DCM có:
+ MA = MD (gt).
+ MB = MC (M là trung điểm của BC).
+ \(\widehat{AMB}=\widehat{DMC}\) (2 góc đối đỉnh).
\(\Rightarrow\) \(\Delta\) ABM = \(\Delta\) DCM (c - g - c).
\(\Rightarrow\) AB = CD (2 cạnh tương ứng).
Xét \(\Delta\) ABM và \(\Delta\) DCM có:
+ MA = MD (gt).
+ MB = MC (M là trung điểm của BC).
+ \(\widehat{AMB}=\widehat{DMC}\) (2 góc đối đỉnh).
\(\Rightarrow\) \(\Delta\) ABM = \(\Delta\) DCM (c - g - c).
\(\Rightarrow\) AB = CD (2 cạnh tương ứng).
Cho tam giác ABC có AB=AC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh: tam giác ABM=tam giác ACM. b) Chứng minh: tam giác ABM=tam giác DCM. Từ đó suy ra:AB//DC
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
Cho tam giác ABC vuông tại A có AM là trung tuyến. Trên tia đối của tia MA, lấy điểm D sao cho MA = MD
a) CM : tam giác ABM = DCM. Từ đó suy ra AB // CD
b) Gọi K là trung điểm AC. Chứng minh tam giác ABK = DCK
c) Gọi N là giao điểm của AM và BK, I là giao điểm của KD và BC. Cm tam giác KNI cân
Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a. Chứng minh: tam giác ABM=tam giác DCM
b. Chứng minh: AC=BD
c. Chứng minh AB//CD
Cho tam giác ABC có AB = AC,gọi M là trung điểm của BC. a)Chứng minh:∆ABM = ∆ACM. b)Trên tia đối của tia MA lấy điểm D sao cho MA = MD.Chứng minh:∆ABM = ∆DCM và AB//CD. c)Chứng minh tam giác ABM vuông tại M
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC
Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a. Chứng minh: tam giác ABM=tam giác DCM
b. Chứng minh: AC=BD
c. Chứng minh AB//CD
Cho tam giác ABC có AC > AB, gọi M là trung điểm của cạnh BC. Trên tia đối của MA lấy điểm D sao cho MD=MA
a) Chứng minh tam giác ABM = tam giác CMD
b) Chứng minh AB=CD và AB//CD
C)Chứng minh góc CAB= GÓC BDC
d) Trên các đoạn thẳng AB,CD lần lượt lấy các điểm E và F sao cho AE=DF. Chứng minh tam giác AEM= tam giác DFM, từ đó suy ra E,M,F thẳng hàng
Cho Tam Giác ABC vuông tại A. Điểm M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD . Chứng minh rằng :
a/ Tam Giác ABM = Tam giác DCM
b/ AB=DC và AB//DC