\(\frac{406}{336}-\frac{1}{3}\)
Tìm x \(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{x\left(x+1\right):2}=\frac{2015}{336}\)
Bạn trả lời kiểu j vậy
ko biết làm thì đừng trả lời
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{1886}\)
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{1886}\)
\(=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{41.46}\)
\(=\frac{5}{5}\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{41.46}\right)\)
\(=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{41.46}\right)\)
\(=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{41}-\frac{1}{46}\right)\)
\(=\frac{1}{5}\left(1-\frac{1}{46}\right)\)
\(=\frac{1}{5}.\frac{45}{46}=\frac{9}{46}\)
1/(1.6) + 1/(6.11) + 1/(11.16) + … + 1/[(5n-4)(5n+1)]
=(1/1 – 1/6)/5 + (1/6 – 1/11)/5 + (1/11 – 1/16)/5 +…+ [1/(5n-4) – 1/(5n+1)]/5
=[1/1 – 1/6 + 1/6 – 1/11 + 1/11 – 1/16 + … + 1/(5n-4) – 1/(5n+1)]/5
=[1 – 1/(5n+1)]/5
=[1 – 1/(5.100+1)]/5 = 100/501
\(B=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{496.501}\)
Quy luật:
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
...
1/(1.6) + 1/(6.11) + 1/(11.16) + … + 1/[(5n-4)(5n+1)]
=(1/1 – 1/6)/5 + (1/6 – 1/11)/5 + (1/11 – 1/16)/5 +…+ [1/(5n-4) – 1/(5n+1)]/5
=[1/1 – 1/6 + 1/6 – 1/11 + 1/11 – 1/16 + … + 1/(5n-4) – 1/(5n+1)]/5
=[1 – 1/(5n+1)]/5
Tổng 100 số đầu =[1 – 1/(5.100+1)]/5 = 100/501
1/1.6 + 1/6.11+ 1/11.16+ ....
số thứ 100 có dạng 1/(496.501)
do đó tổng trên bằng 1/5( 1/1- 1/501) = 100/ 501
hc tốt
\(B=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{496.501}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(B=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\right)\)
\(B=\frac{1}{5}.\left(1-\frac{1}{501}\right)\)
\(B=\frac{1}{5}.\frac{500}{501}=\frac{100}{501}\)
B= \(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+....+\frac{1}{496.501}\)
\(5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{496.501}\)
\(5B=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+\frac{21-16}{16.21}+...+\frac{501-496}{496.501}\)
\(5B=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(5B=1-\frac{1}{501}=\frac{500}{501}\Rightarrow B=\frac{100}{501}\)
tính nhanh:
\(A=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+.....+\frac{1}{496.501}\)
1A = 1/6 . (1 - 1/501) = 1/6 . 500/501 => A = 500/501.6=500/3006
=1/1*6+1/6*11+1/11*16+1/16*31+...+1/496+1/496*501
=1/5*(1-1/6*1/6-1/11+1/11-1/16+1/16-1/31+...+1/496-1/501)
=1/5*(1-1/501)
=1/5*500/501
=100/101
Vậy A=100/101
giải chi tiết thêm giúp mình được ko ạ
Tính nhanh: \(y=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{496.501}\)
Ta thay:1/6=1.6; 1/66=6.11; 1/176= 11.16; 1/336= 16.21;...........
=1/6+1/66+1/176+1/376+.....+1/496.501
=1/5.(1-1/501)
=1/5=500/501=100/501
Vay y= 100/501
\(y=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{496.501}\)
\(\Rightarrow y=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow5y=5.(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow5y=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{496.501}\)
\(\Rightarrow5y=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{496}-\frac{1}{501}\)
\(\Rightarrow5y=1-\frac{1}{501}\)
\(\Rightarrow5y=\frac{501}{501}-\frac{1}{501}\)
\(\Rightarrow5y=\frac{500}{501}\)
\(\Rightarrow y=\frac{500}{501}\div5\)
\(\Rightarrow y=\frac{500}{501}.\frac{1}{5}\)
\(\Rightarrow y=\frac{100}{501}\)
Tính nhanh:
\(B=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{496501}\)
\(D=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+\frac{1}{546}\)
\(x+\frac{5}{3}=\frac{1}{81}\)
\(-52+\frac{2}{3}x=-46\)
\(\frac{x}{45}=\frac{5}{6}+\frac{-29}{30}\)
\(D=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+\frac{1}{546}\)
\(D=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}\)
\(D=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(D=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right)\)
\(D=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{26}\right)\)
\(D=\frac{1}{5}.\frac{25}{26}=\frac{5}{26}\)
\(x+\frac{5}{3}=\frac{1}{81}\)
\(x=\frac{1}{81}-\frac{5}{3}\)
\(x=\frac{-134}{81}\)
\(x+\frac{5}{3}=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}-\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{134}{81}\)
\(-52+\frac{2}{3}x=-46\)
\(\Leftrightarrow\frac{2}{3}x=-46+52\)
\(\Leftrightarrow\frac{2}{3}x=6\)
<=> 2x = 6.3
<=> 2x = 18
=> x = 9
\(\frac{x}{45}=\frac{5}{6}+\frac{-29}{30}\)
(có thể hơi khó hiểu từ bước 2, bạn lấy mẫu số chung là 30 nhé)
\(\Leftrightarrow\frac{x}{45}=\frac{25}{30}-\frac{29}{30}\)
\(\Leftrightarrow\frac{x}{45}=\frac{25-29}{30}\)
\(\Leftrightarrow\frac{x}{45}=\frac{-4}{30}\)
\(\Leftrightarrow\frac{x}{45}=\frac{-2}{15}\)
\(\Leftrightarrow x=45\left(-\frac{2}{15}\right)\)
=> x = -6
Tìm tổng của 100 số hạng đầu tiên của dãy sau:\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336};...\)