Cho \(A=\frac{n-5}{n+1}\) n\(\in\) Z. Tìm n \(\in\) Z để A \(\in\) Z
Cho A = \(\frac{n+2}{n-5}\left(n\in z;n\ne5\right)\)Tìm x để A\(\in\)Z
\(ĐểA\in Z\)thì:
\(n+2⋮n-5\)
=> \(\left[n-5\right]+7⋮n-5\)
=> 7 chia hết cho n - 5
=> n -5 E Ư[7] E {-7;-1;1;7}
=> n E {-2;4;6;12}
Vậy: n = -2; n = 4 n = 6; n = 12
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\)thì n-5 là ước nguyên của 7
\(n-5=1\Rightarrow n=6\)
\(n-5=7\Rightarrow n=12\)
\(n-5=-1\Rightarrow n=4\)
\(n-5=-7\Rightarrow n=-2\)
Ai thấy đúng k cho mink nha !!!
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để A \(\in\)Z <=> n - 5 \(\in\)Ư(7) = {1;-1;7;-7}
Ta có bảng:
n - 5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
Vậy ...
Cho \(A=\frac{n+2}{n+5}\left(n\in Z;n\ne5\right)\)Tìm n để A\(\in\)Z
Ta có:
\(A=\frac{n+2}{n+5}=\frac{n+5-3}{n+5}=1-\frac{3}{n+5}\)
Để \(A\in Z\)thì \(\frac{3}{n+5}\in Z\)
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Rightarrow n+5\inư\left(3\right)\)
\(\Rightarrow n+5\in\left\{1;-1;3;-3\right\}\)
Lập bảng :
n+5 | 1 | -1 | 3 | -3 |
n | -4 | -6 | -2 | -8 |
Vậy \(x\in\left\{-4;-6;-2;-8\right\}\)
cho A=\(\frac{6n-1}{3n+2}\)
a,tìm n để A là phân số
b,tìm n\(\in\)Z để A\(\in\)Z
c,tìm n\(\in\)Z để A có giá trị nhỏ nhất
Cho A=\(\dfrac{n+2}{n-5}\left(n\in z;n\ne5\right)\) Tìm n để A ϵ Z
Ta có : \(A=\dfrac{n+2}{n-5}\)
\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)
\(\Rightarrow A=1+\dfrac{7}{n-5}\)
Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)
\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\)
mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
\(Vậy...\)
Bài 1:Cho A=\(\frac{4}{\left(n-2\right).\left(n+1\right)}\),\(n\in Z\)
a)Với \(n\in Z\)nào thì A không tồn tại
b)Viết tập hợp M các số nguyên n để A tồn tại
c) Tìm phân số A, biết n=2, n=0, n=11
d)Tìm \(n\in Z\) để A=\(\frac{1}{7}\)
a) 2 hoặc -1
b)M={-3;-2;0;1;3;4;5}
tim x thuộc z để n=\(\frac{2x-1}{3x+6}\)là phân số
bài 4
cho a=\(\frac{n+2}{n+1}\)
a) chứng tỏ a là tìm số tối giản
b)tìm \(n\in z\)để \(a\in z\)
Tìm x\(\in z\)để :
a,B=\(\frac{-12}{x}\in z\)
b,C=\(\frac{15}{n-2}\in z\)
c,D=\(\frac{8}{n+1}\in z\)
1) Cho tổng:
A = 4n + 4 \(\left(n\in Z\right)\) . Tìm n để A chia hết cho n
B = 5n + 6 \(\left(n\in Z\right)\) . Tìm n để B chia hết cho n
2) Tính nhanh
a) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}\)
b) \(\frac{1}{7}.\frac{5}{9}+\frac{5}{9}.\frac{1}{7}+\frac{5}{9}.\frac{3}{7}\)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
Cho phân số: A= \(\frac{n+1}{n-2}\)
a, Tìm \(n\in Z\) để A có giá trị nguyên
b,Tìm \(n\in Z\) để A có giá trị lón nhất
\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)
Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên
\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3
\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)
Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số
Xin lổi
Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé
a) Ta có : \(\frac{n+1}{n-2}=\frac{\left(n-2\right)+2+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(n+1⋮n-2\Leftrightarrow\frac{3}{n-2}\in Z\Leftrightarrow3⋮n-2\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
* Với n - 2 = 1 => n = 2 +1 = 3 ( thỏa mãn )
* Với n - 2 = -1 => n = -1 + 2 = 1 ( thỏa mãn )
* Với n - 2 = 3 => n = 3 + 2 = 5 ( thỏa mãn )
* Với n - 2 = -3 => -3 + 2 = -1 ( thỏa mãn )
Vậy với \(n\in\left\{3;1;5;-1\right\}\)thì A có giá trị số nguyên
b) Để A có giá trị lớn nhất thì n = 3