1. Tìm các số tự nhiên a, b biết \(\left(2a+5b+1\right).\left(2^a+a^2+a+b\right)=105\)
tìm các số nguyên a và b sao cho
\(\left(2a+5b+1\right)\times(2^{|a|}+a^2+a+b)=105\)
Tìm các nghiệm nguyên của phương trình :
\(\left(2a+5b+1\right).\left(2^a+a^2+a+b\right)=105\)
Tìm các số nguyên a và b thỏa mãn:
\(\left(2a+5b+1\right)\left(2^{|a|}+a^2+a+b\right)=105\)
GIÚP EM ZỚIIIIIIIIII!
Vì \(105\)lẻ \(\Rightarrow2a+5b+1\)lẻ và \(2^{\left|a\right|}+a^2+a+b\)lẻ
\(2x\)chẵn; \(2x+5y+1\)lẻ \(\Rightarrow5y\)chẵn \(\Rightarrow\)y chẵn
\(2^{\left|a\right|}+a^2+a+b\)lẻ; \(a^2+a+b=a\left(a+1\right)+b\)chẵn \(\Rightarrow2^{\left|a\right|}\)lẻ \(\Rightarrow x=0\)
Với \(a=0\)
\(\Leftrightarrow\)\(\left(5b+1\right)\left(1+b\right)=105\)
\(\Leftrightarrow\)...(Phần này bạn tự nhân vào rồi phân tích nha)
\(\Leftrightarrow\)\(\left(b+\frac{3}{5}\right)^2-\left(\frac{25}{3}\right)^2=0\)
\(\orbr{\begin{cases}b+\frac{3}{5}=\frac{23}{5}\\b+\frac{3}{5}=\frac{-23}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=4\\b=\frac{-26}{5}\notin Z\left(loai\right)\end{cases}}\)
Vậy nghiệm phương trình: \(x=0;y=4\)
Tìm a, b ∈ Z thỏa
\(\left(2a+5b+1\right)\left(2^{\left|a\right|}+a^2+a+b\right)=105\)
Tim a; b; c thoa man :\(\left(2a+5b+1\right).\left(2^a+a^2+a+b\right)=105\)
Tìm các số nguyên a và b thỏa mãn:
\(\left(2a+5b+1\right)\left(2^{|a|}+a^2+a+b\right)=105\)
GIÚP EM ZỚIIIIIIIIII!
Tìm các số tự nhiên a,b,c biết
\(\frac{1}{a^2.\left(a^2+b^2\right)}+\frac{1}{\left(a^2+b^2\right)\left(a^2+b^2+c^2\right)}+\frac{1}{a^2+\left(a^2+b^2+c^2\right)}=1\)
tìm các số tự nhiên a,b biết rằng : \(\left(a+1\right).\left(a^2+1\right)=\left(2014b+1\right)^4\)
1) cho a,b,c la các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}\)