Cho tam giác ABC. Gọi P là giao điểm của ba đường phân giác trong tam giác đó. Đường thẳng qua P và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N.
CMR : BC.AP^2 + CA.BP^2 + AB.CP^2 = AB.BC.CA
Cho tam giác ABC. Gọi P là giao điểm của 3 đường phân giác trong tam giác đó. Đường thẳng qua p và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Cmr:
a) Tam giác AMP ~ tam giác APB
b) AM/BN = AP^2/BP^2
c) BC.AP^2 + CA.BP^2 + AB.CP^2 = AB.BC.CA
giúp mks vs
Cho tam giác ABC. Gọi P là giao điểm của ba đường phân giác trong của tam giác đó. Đường thẳng qua P và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Chứng minh rằng:
a, Tam giác AMP đồng dạng với tam giác APB
b, \(\frac{AM}{BN}=\frac{AP^2}{BP^2}\)
c, \(BC.AP^2+CA.BP^2+AB.CP^2=AB.BC.CA\)
Cho tam giác ABC. Gọi P là giao điểm của 3 đường phân giác trong tam giác đó. Đường thẳng qua p và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Cmr:
a) Tam giác AMP ~ tam giác APB
b) AM/BN = AP^2/BP^2
c) BC.AP^2 + CA.BP^2 + AB.CP^2 = AB.BC.CA
Cho P là giao điểm 3 đường phân giác trong ΔABC. Đường thẳng qua P và vuông góc với CP cắt CA, CB tại M,N. Chứng minh rằng:
a) \(\frac{AM}{BN}=\frac{AP^2}{BP^2}\)
b) \(BC.AP^2+AC.BP^2+AB.CP^2=AB.BC.CA\)
c) Gọi D là hình chiếu của P trên BC. Giả sử AB.AC = 2BD.DC. Tính số đo \(\widehat{BAC}\)
Cho hỏi bạn là Đức Trí năm nay lên lớp 9A3 đúng không?
Cho ∆ABC, gọi P là giao điểm 3 đường phân gics trong của tam giác đó. Đường thẳng qua P và vuông góc với CP cắt CA và CP theo thứ tự tại M và N. Chứng minh rằng:
a, ∆AMB~∆ABP
b, AM/BN=AP^2/BP^2
c, BC. AP^2+CA. BP^2=AB. BC. CA
ai đó giúp mình với cảm ơn trước: tam giác ABC; P là giao điểm của 3 đường phân giác trong. đường thẳng qua P vuông góc với CP cắt CA và CB tại M và N.
CM \(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CD^2}{AC-BC}=1\)
Cho P là giao điểm của ba đường phân giác trong của tam giác ABC. Đường thẳng qua P và vuông góc với CP cắt các tia CA, CB tại M, N. Chứng minh rằng: a) Điểm M nằm giữa hai điểm C và A, điểm N nằm giữa hai điểm C và B. b) c) AP2.BC+BP2.AC+CP2.AB=AB.AC.BC
Cho P là giao điểm của ba đường phân giác trong của tam giác ABC. Đường thẳng qua P và vuông góc với CP cắt các tia CA, CB tại M, N. Chứng minh rằng:
a) Điểm M nằm giữa hai điểm C và A, điểm N nằm giữa hai điểm C và B.
b)
c) AP2.BC+BP2.AC+CP2.AB=AB.AC.BC
phần b đây các bạn
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
Cho tam giác ABC .gọi i là giao điểm của ba đường phân giác của ABC . Đường thẳng qua i vuông góc với AI cắt cạnh AB,AC thứ tự tại M và N:
a)tam giác BMi đồng dạng với tam giác INC<giải được rồi>;
b)BM/CN=(BI/CI)^2*(TẮC);
c) AI^2*BC+BI^2*AC+CI^2*AB=AB*BC*CA( cần gấp );
bài công nhận khó!