cho a=b+c và \(c=\frac{bd}{b-d}\) (b #0 d#0 ) chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
Cho biết: a = b + c và c = \(\frac{bd}{b-d}\). CM : \(\frac{a}{b}=\frac{c}{d}\)
\(c=\frac{bd}{b-d}\Rightarrow c\left(b-d\right)=bd\Rightarrow bc-cd=bd\Rightarrow bc=bd+cd\Rightarrow bc=d\left(b+c\right)\Rightarrow bc=da\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(c=\frac{bd}{b-d}\left(a=b+c\right)\)
\(\Rightarrow c\left(b-d\right)=bd\)
\(\Rightarrow cb-cd=bd\)
\(\Rightarrow bc=cd+bd\)
\(\Rightarrow bc=d\left(b+c\right)\)
\(\Rightarrow bc=da\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Vậy ...
Cho biết: a= b + c và c = \(\frac{bd}{b-d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(c=\frac{bd}{b-d}\)
\(\Rightarrow\frac{c}{d}=\frac{b}{b-d}\)
Ta lại có:
a=b+c
=> b= a-c
Khi đó:
\(\frac{b}{b-d}=\frac{a-c}{b-d}=\frac{a}{b}=\frac{c}{d}\)
bạn hiểu là dãy tỷ số bằng nhau là a/b=c/d=a-c=/b-d ấy áp dụng ngược lại là ra cái trên thôi
cho a, b, c, d khác 0,c+d=1 và \(\frac{c}{a}+\frac{d}{b}=\frac{1}{ac+bd}\)
CMR a=b
Cho a=b+c và c=\(\frac{bd}{\left(b-d\right)}\)và (b;d khác 0). CM \(\frac{a}{b}\)=\(\frac{c}{d}\)
điều kiên:
b<>d <>0
=> c<>0
a=b+c
=> a<>0
*
c=(b.d):(b-d).
=> c*(b-d)=b*d
=>cb-cd=b*d
=>cb=cd+bd
=>=cb=d(b+c)=ad (vì b+c=a)
cb=ad (từ cái này xoay kiểu gì cũng được)
c:d=a:b
a/b=c/d >>>dpcm
c/a=d/b
Cho a = b = c và \(c=\frac{bd}{b-d}\left(b\ne0;d\ne0\right)\)
Chứng minh \(\frac{a}{b}=\frac{c}{d}\)
Ta có :
\(c=\frac{bd}{b-d}\)
\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)
\(a=b+c\Rightarrow c=a-b\)
\(\Rightarrow c=\frac{bd}{b-d}=a-b\)
\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)
\(\Rightarrow ab-ad-b^2+bd=bd\)
\(\Rightarrow a\left(b-d\right)-b^2=0\)
\(\Rightarrow a.\frac{bd}{c}-b^2=0\)
\(\Rightarrow\frac{ad}{c}-b=0\)
\(\Rightarrow\frac{ad-bc}{c}=0\)
\(\Rightarrow ad-bc=0\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Cho ab + c va c = \(\frac{bd}{b-d}\) và \(\frac{a}{b}=\frac{c}{d}\)
Cho bốn số dương a,b,c,d thỏa mãn điều kiện a+c=2b và c(b+d)=bd
Chứng minh \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)
Từ \(c\left(b+d\right)=2bd\Rightarrow b+d=\frac{2ab}{c}\)
Viết : \(\frac{a+c}{b+d}=\frac{2ab}{2bd}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Đến đây bn chỉ cần biến đổi để có điều phải chứng minh
hc tốt
tròi oi bn cứu mk rồi :((
cám ơn ơn bn nhiều lắm khi nào có bài khó mk sẽ nhờ bn giúp ạ !!!
Cho a = b + c và c = \(\frac{bd}{b-d}\). Chứng minh : \(\frac{a}{b}=\frac{c}{d}\)
cho \(^{b^2=ac,c^2=bd}\)với b,c,d khác 0 và b+c+d=0 CMR:
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )
c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Vậy ...
minh moi dang cau moi giup minh dc khong