Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thế Thành
Xem chi tiết
Thế Thành
Xem chi tiết
thieuthiyen
Xem chi tiết
Nguyễn Thị Quỳnh Trang
13 tháng 5 2016 lúc 19:58

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên

AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC có:

HB = HC

 = 900

AH: cạnh chung

Nên ∆HAB = ∆HAC => AB = AC

Vậy ∆ABC cân tại A

đặng thị hồng nga
4 tháng 5 2019 lúc 18:08

xét tam giác AMB và tam giác AMC, có:

AB=AC

MB=MC(gt)

AM chung

=>tam giác AMB= tam giác AMC (c.c.c)

M1=M2 mà góc M1+góc M2=180 độ

=>góc M1= góc M2= góc MC=90 độ

=>AM vuông góc với BC

mà MA=MB

=>AM là đường trung trực của tam giác ABC

Yên tâm đi chắc chắn đúng

lê đặng ngọc kỳ
Xem chi tiết
Dương Tuyết Trang
Xem chi tiết
Vũ Như Mai
25 tháng 4 2017 lúc 15:39

Thử coi, chả biết đúng không. Không đúng cho t xin lỗi nha

A B C M

Giả dụ đề: Cho tam giác ABC có AM vừa là trung tuyến vừa là đường trung trực

Chứng minh: tam giác ABM = tam giác ACM

Xét tam giác ABM và tam giác ACM có:

   \(\hept{\begin{cases}BM=CM\left(gt\right)\\AM:chung\\\widehat{AMB}=\widehat{AMC}=90^0\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

\(\Rightarrow AB=AC\)(hai cạnh tương ứng)

\(\Rightarrow\Delta ABC\)cân tại \(A\)

hay:

\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(hai góc tương ứng)

\(\Rightarrow\Delta ABC\)cân tại \(A\)

kuroba kaito
25 tháng 4 2020 lúc 10:49

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên AH   \(\perp\)BC và HB = HC

Xét 2 tam giác vuông HAB và HAC ta có

HB = HC 

\(\widehat{H_1}\)\(\widehat{H_2}\)= 900

AH : cạnh chung

Nên \(\Delta HAB\)=\(\Delta HAC\)=> AB = AC

Nên \(\Delta ABC\) cân tại A

Khách vãng lai đã xóa
kuroba kaito
25 tháng 4 2020 lúc 10:55

nhớ  t i  k nha

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 14:52

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

 

Lê Mạnh
Xem chi tiết
Sửu Nhi
13 tháng 3 2016 lúc 12:14

Chỉ cần vẽ hình là thấy ngay định lí đó mà

Nguyễn Thị Quỳnh Trang
Xem chi tiết
Kakashi Hakate
13 tháng 5 2016 lúc 19:52

Dựa vào sách giáo khoa ý

Cold Wind
13 tháng 5 2016 lúc 20:15

A B C D Cả 4 câu đều là 1 hình như thế này, chỉ có kí hiệu khác nhau, bạn tự dựa vào nội dung câu hỏi mà kí hiệu lên hình nhé.

Câu 1:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

DB= DC

=> tam giác ABD = tam giác ACD (2 cạnh góc vuông)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 2:

Chứng minh y chang câu 1

Câu 3:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

BAD = CAD

=> tam giác ABD = tam giác ACD (cạnh góc vuông_ góc nhọn)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 4:

Chứng minh giống hệt câu 3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 18:10

Giải bài 52 trang 79 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên AH ⊥ BC và HB = HC

Xét hai tam giác vuông HAB và HAC, có:

      HB = HC

      AH: cạnh chung

Nên ∆HAB = ∆HAC (hai cạnh góc vuông)

⇒ AB = AC (hai cạnh tương ứng)

Vậy ∆ABC cân tại A.