Cho P = \(\frac{x+y+z}{t}=\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}\)\(\left(x;y;z;t\ne0\right)\)
Giá trị của biểu thức \(\left(P-2\right)^{9876}\)là:
A. 2
B. (-1)
C. 3
D. 1
Cho các số nguyên x,y,z,t thỏa mãn
\(\frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}\)
CTR:A =\(\left(\frac{y+z}{x+t}\right)^{2013}+\left(\frac{y+t}{x+y}\right)^{2014}\)có giá trị là số nguyên
Đề sai kìa bạn , xem lại phân số : (y+t/x+y)^2014
vậy bn làm theo cái đúng của bn,mong bn giúp mk
\(Cho:\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+y+t}=\frac{t}{x+y+z}.TínhF=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
từ đó =>3x=y+z+t
=>4x=x+y+z+t
tương tự=>4y=x+y+z+t
4z=x+y+z+t
4t=x+y+z+t
=>x=y=z=t=>F=4
mà bài này lớp 7 chứ,có phải lớp 9 đâu
dãy đó ra bằng 1/3. nhưng sao suy ra đc x=y=z=t vậy?
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
cho các số dương x,y,z,t . Chứng minh: \(\frac{40}{3}\le\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\)
\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)
Đẳng thức xảy ra khi x = y = z = t > 0
Cho x,y,z,t >0
C/m : \(\left(x+y+z+t\right)\left(\frac{1}{x+y+z}+\frac{1}{y+z+t}+\frac{1}{z+t+x}+\frac{1}{t+x+y}\right)\ge\frac{16}{3}\)
bạn dùng BĐT Cauchuy-Swartch cho cs Bt thứ 2 là ra nhé
cho x,y,z,t thuoc R* sao cho:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính P=\(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(=\frac{x+y+z+t}{y+z+t+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}\)
\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow x=y=z=t\)
\(=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{x+z}=\frac{x+x}{x+x}+\frac{y+y}{y+y}+\frac{z+z}{z+z}+\frac{t+t}{t+t}=4\)
Cho x,y,z,t thỏa mãn \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{y}{t+x+y}=\frac{t}{x+y+z}\)
Tính \(P=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)Khi đó \(P=1+1+1+1=4\)
Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính : P = \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính :\(Q=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
từ biểu thức đã cho , ta thấy các phân số bằng nhau .
Có 2 dạng bằng nhau :
- cũng mẫu và tử
- nhân hay chia mẫu và tử cho một số thì được phân số đã cho
Nếu ta lấy cách 1 , cũng mẫu và tử thì có :
y = z = t = x
Vậy có biểu thức phía dưới bằng :
1 + 1 + 1 + 1 = 4
Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4
còn theo cách kia tớ không biết giải
Cho biết: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính: \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)