Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamtruongan
Xem chi tiết
Nguyễn Anh Quân
4 tháng 3 2018 lúc 14:46

Đề sai kìa bạn , xem lại phân số : (y+t/x+y)^2014

phamtruongan
4 tháng 3 2018 lúc 19:15

vậy bn làm theo cái đúng của bn,mong bn giúp mk

Dương Ngọc Minh
Xem chi tiết
Nguyễn Thiều Công Thành
16 tháng 7 2017 lúc 19:45

từ đó =>3x=y+z+t

=>4x=x+y+z+t

tương tự=>4y=x+y+z+t

4z=x+y+z+t

4t=x+y+z+t

=>x=y=z=t=>F=4

mà bài này lớp 7 chứ,có phải lớp 9 đâu

Nguyễn Thiều Công Thành
16 tháng 7 2017 lúc 19:37

sử dụng dãy tỉ số bằng nhau

Dương Ngọc Minh
16 tháng 7 2017 lúc 19:40

dãy đó ra bằng 1/3. nhưng sao suy ra đc x=y=z=t vậy?

nam nè bình tĩnh
Xem chi tiết
Thị Lương Hồ
Xem chi tiết
Kiệt Nguyễn
12 tháng 9 2020 lúc 10:41

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

Khách vãng lai đã xóa
Nguyễn Hoàng Dũng
Xem chi tiết
Hoàng Minh Hoàng
14 tháng 9 2017 lúc 20:58

bạn dùng BĐT Cauchuy-Swartch cho cs Bt thứ 2 là ra nhé

Thảo Vy Đặng Thị
Xem chi tiết
Đinh Đức Hùng
12 tháng 11 2016 lúc 20:54

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(=\frac{x+y+z+t}{y+z+t+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}\)

\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Rightarrow x=y=z=t\)

\(=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{x+z}=\frac{x+x}{x+x}+\frac{y+y}{y+y}+\frac{z+z}{z+z}+\frac{t+t}{t+t}=4\)

nguyen cuc
5 tháng 9 2017 lúc 14:23

vì sao x=y=z=t

Đéo Còn Tên
Xem chi tiết
Lightning Farron
24 tháng 12 2016 lúc 13:08

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

Khi đó \(P=1+1+1+1=4\)

Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

 

Lightning Farron
24 tháng 12 2016 lúc 13:05

ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

Võ Phan Thảo Uyên
Xem chi tiết
Nguyễn Thị Nhàn
Xem chi tiết
Băng Dii~
2 tháng 11 2016 lúc 15:19

từ biểu thức đã cho , ta thấy các phân số bằng nhau . 

Có 2 dạng bằng nhau :

- cũng mẫu và tử 

- nhân hay chia mẫu và tử cho một số thì được phân số đã cho 

Nếu ta lấy cách 1 , cũng mẫu và tử thì có :

y = z = t = x 

Vậy có biểu thức phía dưới bằng :

1 + 1 + 1 + 1 = 4 

Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4

còn theo cách kia tớ không biết giải

Vũ Ngọc Duy Anh
Xem chi tiết