Hệ phương trình đối xứng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đéo Còn Tên

Cho x,y,z,t thỏa mãn \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{y}{t+x+y}=\frac{t}{x+y+z}\)

Tính \(P=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)

Lightning Farron
24 tháng 12 2016 lúc 13:08

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

Khi đó \(P=1+1+1+1=4\)

Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

 

Lightning Farron
24 tháng 12 2016 lúc 13:05

ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)


Các câu hỏi tương tự
Nguyen
Xem chi tiết
Trương Văn Châu
Xem chi tiết
tuấn nguyễn
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết
Vũ Như Quỳnh
Xem chi tiết
Xuân Huy
Xem chi tiết
Hoàng Huệ Cẩm
Xem chi tiết
trần trác tuyền
Xem chi tiết