Hệ phương trình đối xứng

Hoàng Huệ Cẩm

xét hai số thực thay đổi \(x\ne0,y\ne0\)thỏa mãn xy(x+y)=\(x^2-xy+y^2\). tìm giá trị lớn nhất của biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

Nguyễn Nguyên Thái Thanh
12 tháng 5 2016 lúc 22:15

Gọi T là tập giá trị của A. Điều kiện để \(m\in T\) là hệ phương trình sau có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\)

\(\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{1}{x^3}+\frac{1}{y^3}=m\end{cases}\) \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^3y^3}=m\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{xy\left(x+y\right)}{x^3y^3}=m\end{cases}\)

                                               \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)^2}{x^2y^2}=m\end{cases}\)  (1)

Đặt \(S=x+y\)

       \(P=xy;\left(S^2\ge4P\right)\) . Hệ (1) trở thành \(\begin{cases}SP=S^2-3P\\\frac{S^2}{P^2}=m\end{cases}\) (2)

Hệ (1) có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\) khi và chỉ khi hệ (2) có nghiệm (S,P) thỏa mãn \(S^2\ge4P;P\ne0\) do

\(S^2-3P=x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) với mọi  \(x\ne0;y\ne0\)  nên SP > 0 \(\Rightarrow\frac{S}{P}>0\)

Như thế :

* Nếu \(m\le0\) thì hệ (2) vô nghiệm

* Nếu m > 0 thì

\(\left(2\right)\Leftrightarrow\begin{cases}SP=S^2-3P\\S=\sqrt{m}P\end{cases}\)\(\Leftrightarrow\begin{cases}\sqrt{m}P^2=mP^2-3P\\S=\sqrt{m}P\end{cases}\)

      \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P^2-3P=0\\S=\sqrt{m}P\end{cases}\) do \(P\ne0\)  \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P=3\\S=\sqrt{m}P\end{cases}\) (3)

Hệ (3) có nghiệm khi và chỉ khi \(m-\sqrt{m}\ne0\Leftrightarrow m\ne1\), lúc này từ (3) ta có :

\(P=\frac{3}{m-\sqrt{m}}\Rightarrow S=\frac{3}{\sqrt{m}-1}\)

Hệ (2) có nghiệm (S;P) thỏa mãn \(S^2\ge4;P\ne0\) khi và chỉ khi:

\(0< m\ne1\) và \(\frac{9}{\left(\sqrt{m}-1\right)^2}\ge\frac{12}{\sqrt{m}\left(\sqrt{m}-1\right)}\)

\(\Leftrightarrow0< m\ne1\) và \(3\sqrt{m}\ge4\left(\sqrt{m}-1\right)\)

\(\Leftrightarrow0< m\ne1\) và \(\sqrt{m}\le4\Leftrightarrow m\in\) (0;16] \ \(\left\{1\right\}\)

Tập giá trị của A là  (0;16] \ \(\left\{1\right\}\) suy ra max A = 16 ( không tồn tại min A)

 

 

 
Bình luận (0)

Các câu hỏi tương tự
Hoàng Thị Tâm
Xem chi tiết
Huỳnh Thị Đông Thi
Xem chi tiết
Vũ Như Quỳnh
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Liana Phan
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Xuân Huy
Xem chi tiết
Bùi Hoàng Anh
Xem chi tiết
trần tuyết đỏ
Xem chi tiết