Giải phương trình:
x-3/2011+x-2/2012=x-2012/2+x-2011/3
Giải phương trình : (x-3/2011)+(x-2/2012)=(x-2012/2)+(x-2011/3)
x - 3/2011 + x - 2/2012 = x - 2012/2 + x - 2011/3
( x - 3 -2011)/2011 + (x - 2-2012)/2012 = (x - 2012-2)/2 + (x - 2011-3)/3
(x-2014)/2011+(x-2014)/2012=(x-2014)/2+(x-2014)/3
(x-2014)(1/2011+1/2012-1/2-1/3)=0
x-2014=0 vì (1/2011+1/2012-1/2-1/3 khác 0
x= 2014
k cho mk nha
giải phương trình : \(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Leftrightarrow\frac{x-3}{2011}-1+\frac{x-2}{2012}-1=\frac{x-2012}{2}-1+\frac{x-2011}{3}-1\)
\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=2014\)
Giải phương trình: \(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
Ta có: \(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
⇔\(\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)
\(\Leftrightarrow\frac{x-3-2011}{2011}+\frac{x-2-2012}{2012}=\frac{x-2012-2}{2}+\frac{x-2011-3}{3}\)
⇔\(\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)
⇔\(\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\ne0\) nên \(x-2014=0\)
hay x=2014
Vậy: x=2014
Giải phương trình
\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
Ta có:\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Rightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)
\(\Rightarrow\left(x-2014\right).\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)\)
\(\Rightarrow x-2014=0\)( vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\ne0\))
\(\Rightarrow x=2014\)
Vậy x= 2014.
Giải phương trình:\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Rightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)
\(\Rightarrow x=0\)
\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Leftrightarrow\frac{x-3}{2011}-1+\frac{x-2}{2012}-1=\frac{x-2012}{2}-1+\frac{x-2011}{3}-1\)
\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)
\(\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Vì : \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\) < 0
=> x-2014 =0
\(\Leftrightarrow x=2014\)
giải bất phương trình:
\(\frac{x-3}{2011}+\frac{x-2}{2012}\ge\frac{x-2012}{2}+\frac{x-2011}{3}\)
Giải phương trình:
\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
Giải phương trình sau :
X-3/2011+x-2/2012=x-2012/2+x-2011/3
Giúp giùm mình với ..............
\(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\)
\(\Leftrightarrow\left(\dfrac{x-3}{2011}-1\right)+\left(\dfrac{x-2}{2012}-1\right)=\left(\dfrac{x-2012}{2}-1\right)+\left(\dfrac{x-2011}{3}-1\right)\)
\(\Leftrightarrow\left(\dfrac{x-3-2011}{2011}\right)+\left(\dfrac{x-2-2012}{2012}\right)=\left(\dfrac{x-2012-2}{2}\right)+\left(\dfrac{x-2011-3}{3}\right)\)
\(\Leftrightarrow\left(\dfrac{x-2014}{2011}\right)+\left(\dfrac{x-2014}{2012}\right)=\left(\dfrac{x-2014}{2}\right)+\left(\dfrac{x-2014}{3}\right)\)
\(\Leftrightarrow\left(\dfrac{x-2014}{2011}\right)+\left(\dfrac{x-2014}{2012}\right)-\left(\dfrac{x-2014}{2}\right)-\left(\dfrac{x-2014}{3}\right)=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-2014\right)=0\) ( vì \(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\) )
\(\Leftrightarrow x=2014\)
Vậy phương trình có nghiệm \(S=\left\{2014\right\}\)
\(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\)
\(\Leftrightarrow\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\)
\(\Leftrightarrow\dfrac{x-3-2011}{2011}+\dfrac{x-2-2012}{2012}=\dfrac{x-2012-2}{2}+\dfrac{x-2011-3}{3}\)
\(\Leftrightarrow\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow x-2014=0\) ( Vì: \(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\))
Vậy x = 2014
Giải phương trình : \(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
Trừ 2 vế đi 2 đơn vị : (x-3-2011)/2011 + (x-2-2012)/2012= (x-2012-2)/2 +(x-2011-3)/3
Đổi vê chuyển dấu, đặt tử là x-2014 ra ngoài: (x-2014)(1/2011+1/2012-1/2-1/3)=0
Vì 1/2011+1/2012-1/2-1/3 khác 0 nên x-2014=0
Hay x=2014