CMR:1/2^2+1/3^2+1/4^2+....+1/(n-1)^2+1/n^2<1. Với n thuộc N ; n > 2
a)Cho A= 1/2^2+1/3^2+...+1/n^2.CMR A<1
b)Cho B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2.CMR B<1/2
c)Cho C=3/4+8/9+15/16+...+n^2-1/n^2.CMR C<n-2
CMR 1^2-2^2+3^2-4^2+...-(-1)^(n-1)*n^2=(-1)^(n-1)*n(n+10/2
Cmr:
a)M=1/2^2+1/3^2+1/4^2+...+1/n^2<1 (neN;n>=2)
b)N=1/4^2+1/6^2+1/8^2+...+1/(2n)^2<1/4 (n€N,n>=2)
c)P=2!/3!+2!/4!+2!/5!+...+2!/n!<1 (n€N,n>=3)
CMR : M = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 1 ( n thuộc N ; n lớn hơn hoặc bằng 2)
Ta có :
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(M< 1-\frac{1}{n}\)
Mà \(1-\frac{1}{n}< 1\)nên M < 1
Vậy ...
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow M=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}< 1\) (đpcm)
Vãi em mới học lớp 6 mà cô cho em bài này để ôn thi giữa kỳ
CMR : 1/2^2 + 1/3^2 +1/4^2 +.........+ 1/n^2 < 1 ( n thuoc N ; n >= 2)
Goi tong tren la A
Ta co: A = 1/2^2 + 1/3^2 + 1/4^2 +.....+1/n^2
A= 1/2.2 + 1/3.3 + 1/4.4 + ......+ 1/n.n
A < 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +.....+ 1/(n-1)n
A< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/n-1 - 1/n
A< 1 - 1/n < 1
=> A < 1 ( dpcm)
CMR :
a) N = 1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
b) P = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1 ( n thuộc N ; n lớn hơn hoặc bằng 3 )
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
Cho N= 1/2^2+1/3^2+1/4^2+........+1/2009^2+1/2010^2
CMR N < 1
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow N< 1-\frac{1}{2010}\)
\(\Rightarrow N< 1\left(đpcm\right)\)
Chúc bạn học tốt !!!!
mọi người ơi tl nhanh nhanh nha mk đag rất cần
N=1/2^2 + 1/3^2+1/4^2+.....+1/2009^2 + 1/2010^2
cmr: N <1
ta có: \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2010^2}=\frac{1}{2010.2010}<\frac{1}{2009.2010}\)
\(\Rightarrow N<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2009}-\frac{1}{2010}=\frac{1}{1}-\frac{1}{2010}=\frac{2009}{2010}<1\)
=>N<1(đpcm)
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)