Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đoàn Hồng Thái
Xem chi tiết
Đinh Minh Tuệ
Xem chi tiết
Nguyễn Kim Nam
Xem chi tiết
Messia
Xem chi tiết
Thanh Tùng DZ
15 tháng 12 2017 lúc 19:03

Ta có :

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(M< 1-\frac{1}{n}\)

Mà \(1-\frac{1}{n}< 1\)nên M < 1

Vậy ...

ST
15 tháng 12 2017 lúc 19:06

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow M=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}< 1\) (đpcm)

Trần thị minh Ngọc
21 tháng 3 lúc 22:35

Vãi em mới học lớp 6 mà cô cho em bài này để ôn thi giữa kỳ

 

Kalluto Zoldyck
Xem chi tiết
Kalluto Zoldyck
18 tháng 3 2016 lúc 17:36

Goi tong tren la A

Ta co: A = 1/2^2 + 1/3^2 + 1/4^2 +.....+1/n^2

A= 1/2.2 + 1/3.3 + 1/4.4 + ......+ 1/n.n

A < 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +.....+ 1/(n-1)n

A< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/n-1 - 1/n

A< 1 - 1/n < 1

=> A < 1 ( dpcm)

Vũ Hà Anh
18 tháng 3 2016 lúc 17:38

Khó quá à , Phuong giỏi thiệt đó nha!!!

Quản gia Whisper
18 tháng 3 2016 lúc 17:40

khâm phục

SPECTRE
Xem chi tiết
Thanh Tùng DZ
2 tháng 6 2017 lúc 9:25

a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

 \(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )

\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)

Vậy \(N< \frac{1}{4}\)

b)  \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)

\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)

Vậy \(P< 1\)

Phùng Quang Thịnh
2 tháng 6 2017 lúc 9:40

P<1 nha bn k nha

khucdannhi
Xem chi tiết
Arima Kousei
30 tháng 4 2018 lúc 11:02

Ta có :  

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow N< 1-\frac{1}{2010}\)

\(\Rightarrow N< 1\left(đpcm\right)\)

Chúc bạn học tốt !!!! 

khucdannhi
30 tháng 4 2018 lúc 11:00

mọi người ơi tl nhanh nhanh nha mk đag rất cần

Tăng Thị Cẩm Tú
Xem chi tiết
Hoàng Phúc
14 tháng 2 2016 lúc 10:06

ta có: \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2010^2}=\frac{1}{2010.2010}<\frac{1}{2009.2010}\)

\(\Rightarrow N<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2009}-\frac{1}{2010}=\frac{1}{1}-\frac{1}{2010}=\frac{2009}{2010}<1\)

=>N<1(đpcm)

kagamine rin len
Xem chi tiết