Số các cặp số nguyên thỏa mãn \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
Số các cặp số nguyên (x;y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Rightarrow x=5:\frac{1-2y}{8}=\frac{40}{1-2y}\)
Do x, y là số nguyên => 40 chia hết cho 1 - 2y
=> 1 - 2y thuộc Ư(40)
Mà 1 - 2y là lẻ => 1 - 2y thuộc {-1; 1; -5; 5}
=> y thuộc {1; 0; 3; -2}
=> x thuộc {-40; 40; -8; 8}
Số các cặp số nguyên (x,y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)là......
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x.(1-2y)=5.8=40
=>x và 1-2y là ước của 40
2y là số chẵn =>1-2y là số lẻ =>1-2y là ước lẻ của 40
Ta có bảng sau:
x | 40 | -40 | 8 | -8 |
1-2y | 1 | -1 | 5 | -5 |
suy ra :
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy.................................................
Số cặp số nguyên (x;y) thỏa mãn :\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
quy đồng lên bỏ mẫu ta có 160+8xy=4x
=> 4x-8xy=160
=4x(1-2y)=160
=x(1-2y)=40
1-2y thuộc Z => đó là số lẻ ước của 40 chỉ có 5 và -5 là số lẻ khỏi cần tính => có 2 cặp
Số các cặp là ( 40 ; 0 ) ; ( 0 ; 40 )
Vì \(\frac{5}{40}+\frac{0}{4}=\frac{1}{8};\frac{5}{0}+\frac{40}{4}=\frac{1}{8}\)
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn hệ thức \(y=\frac{1}{x+1}+\frac{8}{x-4}\)
Số các cặp số nguyên (x;y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Các bạn giúp mình nhé mình cần trả lời nhanh để đi thi cấp tỉnh Violimpic Hihi! ^_^
tìm các số nguyên x;y thỏa mãn a)\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
b)tìm số hữu tỉ x thỏa mãn tổng của số đó và nghịch đảo của số đó là 1 số nguyên
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Có bao nhiêu cặp số nguyên x, y thỏa mãn đề bài?
Tìm các cặp số nguyên x,y thỏa mãn
\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
\(\frac{1}{y}=\frac{x-3}{4}\)
\(\left(x-3\right)\times y=4=\left(-1\right)\times\left(-4\right)=\left(-4\right)\times\left(-1\right)=4\times1=1\times4=2\times2=\left(-2\right)\times\left(-2\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(-1;-1\right);\left(7;1\right);\left(4;4\right);\left(5;2\right);\left(1;-2\right)\right\}\)
\(\frac{x}{4}\)-\(\frac{1}{y}\)=\(\frac{3}{4}\)
\(\frac{1}{y}\)=\(\frac{x-3}{4}\)
\(\Rightarrow\)y.(x-3)=4 hay y và x-3 \(\in\)Ư(4)
Ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 |
x-1 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 5 | -3 | 3 | -1 | 2 | 0 |
Vậy (x;y)\(\in\){(5;1);(-3;-1);(3;2);(-1;-2);(2;4);(0;-4)}
số cặp số nguyên x,y thỏa mãn:\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)là.............