cho tam giác ABC có AB=AC. Gọi M là TĐ của BC. CMR; a) TAM GIÁC AMB = TAM GIÁC AMC b) AM là p/g của BAC c) AM vuông góc với BC d) vẽ At là tia p/g của góc ngoài đỉnh A của tam giác ABC . CM At // BC
Bài 1. Cho tam giác ABC với AB<AC, kẻ các trung tuyến BB' và CC'. CMR: BB'<CC'.
Bài 2. Cho tam giác ABC với AB<AC, về phía ngoài tam giác dựng các tam giác đều: tam giác AEB và tam giác AFC, gọi M là TĐ của BC. CMR: ME<MF.
Bài 3. Cho tam giác ABC có BC là cạnh nhỏ nhất, kẻ AH vuông góc với BC, diểm M là TĐ của AC sao cho: AH=BM. CMR: góc B< 60 độ.
các bạn giúp mình bài 3 nha, 2 bài đầu bị lỗi
Bạn ơi hình đâu vậy bạn??????????
Trả lời :
Hình đâu bn ???
- Hok tốt !
^_^
Cho tam giác ABC, gọi M là TĐ của BC và góc BAM> góc CAM. CMR: AC>AB.
cho tam giác ABC vuông tại A có AB = AC . Gọi M là TĐ của BC, D là TĐ của AC
a, CMR, AM vuông góc vs BC
b, Tù A kẻ đường thẳng vuông góc vs BD cắt BC tại E. Trên tia đối tia DE lấy đ' F sao cho DF = DE . CMR, AE//CE
c, Từ C dựng đường thẳng vuông góc vs AC cắt AE tại G . CMR : tam giác BAD = tam giác ACG
d, CM, AB = 2CG
â)xét tam giác AMBvà tam giác AMC
AB=AC( gt)
AM chung
MB=MC ( M là trung điểm của BC )
=> tam giác AMB= tam giác AMC ( c.c.c)
=> góc AMB= góc AMC ( 2 góc tương ứng )
mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )
=> góc AMB= góc AMC=90O
=> AM vuông góc với BC
b) xét tam giác ADF và tam giác ADE
DF=DE ( gt)
góc ADF= góc CDE ( 2 góc đối đỉnh )
AD=CD ( D là trung điểm của AC)
=> tam giác ADF = tam giác ADE ( c.g.c)
=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE
=.> AF// CE
Cho tam giác ABC có M,N lần lượt là TĐ của AB và AC
a ) Tứ giác BMNC là hình gì ? Vì sao?
b) Gọi I là TĐ MN .Đường thẳng AI cắt Bc tại k .CmR : tứ giác AMKN là hbh
c ) tam giác abc là hình gì thì tứ giác AMKN là hình thoi
D ) với đk trên tam giác abc vẽ KH vuông Ac tại H đường thẳng KH cắt MN tai E . CMR tam giác AME vuông
a, Xét tam giác ABC ta co :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC
=> BMNC là hình bình hành
b, Vì AK cắt BC tại K
Mà MN // BC => AK cắt MN tại I
=> MI = NI ( I là trung điểm )
=> AMKN là hình bình hành
=> AI = IK
1, Cho tg ABC có A<90 . Gọi I là TĐ của cạnh AC . Trên tia đối của tia IB lấy điểm D/ IB=ID. Nối C với D a, CMR tg AIB= tg CID b, Gọi M là Tđ Của BC, N là TĐ của AD CMR I là TĐ cuar MN c, Cmr góc AIB<BIC Tìm đk tg ABC để AC vuông CD
2, Cho tam giác ABC gọi M là TĐ của cạnh BC . Trên tia đối của MA lấy điểm E sao cho ME=MA CMR: a,AC=BE và AD // BE b, Gọi I là 1 điểm của bk AC, Gọi K là 1 điểm trên BE / AI=EK. CMR 3 điểm I,M,K thẳng hàng c, Từ EH vg BC tại H biết HBE=50 MEB=25 Tính HEM và BME
Bài 2:
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC=BE và AC//BE
b: Xét tứ giác AIEK có
AI//KE
AI=KE
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay I,M,K thẳng hàng
Cho tam giác ABC có M là tđ của BC . Kẻ Mx // AC CẮT AB tại E , My // AB cắt Ac tại F
CMR : E , F là trung điểm của AB , AC
Cho tam giác ABC có AB=AC. Gọi M là tđ của BC. Gọi E là một điểm nằm giữa A và M. BE cắt AC tại H, CE cắt AB tại K. Chứng minh : a) Tam giác AMB=tam giác AMC b) tam giác AEB= tam giác AEC c) AH=AK
Cho tam giác ABC . M , N là tđ của AB , AC
a ) Tứ giác MNBC là hình gì ? vì sao ?
b ) Gọi Q là tđ của Nc . Đường thẳng qua Q // Bc cát BN tại E . Đường thẳng qqua C // BN cắt QE tại K . Cmr : EK=BC
CHO tam giác ABC có AB=AC . Gọi M là TĐ của AB . Vẽ điểm D sao cho D là TĐ của BD . C/M: BD=2cm