tim MAX va MIN cua bieu thuc sau A=(8x+15)/(x2+1)
Tim Min va Max cua bieu thuc A=(3-4x):(x^2+1)
min-----------nhỏ----
max là giá trị lớn nhất
còn đâu tự làm nha
Cho a>=0,b>=0 thoa man 2a+3b<=6 va 2a+b<=4.Tim max va min cua bieu thuc A=a^2 -ab -b^2
Ban nao biet giup minh voi.TKS
Tim mi va max cua bieu thuc A=( x^2 - 2x+2)/(x^2 + 2x+2)
tim min cua bieu thuc sau :
2x-3 \ 3x+1
tim MIN cua bieu thuc sau
\(D=\frac{x^2-3x+3}{x^2-2x+1}\)
\(D=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-3\left(x-1\right)}{\left(x-1\right)^2}\)
Đặt: x-1=y=>x=y+1. Ta có:
\(D=\frac{\left(y+1\right)^2-3y}{y^2}=\frac{y^2-y+1}{y^2}=1-\frac{1}{y}+\frac{1}{y^2}\)
Đặt: \(\frac{1}{y}=t\Rightarrow D=1-t+t^2\ge\frac{3}{4}\\ D=\frac{3}{4}\Leftrightarrow\left(t-\frac{1}{2}\right)^2=0\Rightarrow t=\frac{1}{2}\)
\(t=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{1}{2}\Rightarrow y=2\Leftrightarrow x-1=2\Rightarrow x=3\)
Vậy minD=\(\frac{3}{4}\Leftrightarrow x=3\)
D=\(\frac{x.x-3x+3}{x.x-2x+1}\)
D=\(\frac{x.\left(x-3\right)+3}{x.\left(x-2\right)+1}\)
D=\(\frac{x-3+3}{x-2+2}\)(Chia cả tử và mẫu cho x lần)
D=\(\frac{x}{x}\)
D=1
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
Tim gia tri lon nhat va gia tri nho nhat cua bieu thuc sau: A=\(\frac{x+1}{x^2+x+1}\)
GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)
Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1
GTNN :
\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)
\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)
Cho 2 so thuc a va b thoa màn a>b va ab=4. Tim GTNN cua bieu thuc P=(a2+b2+ 1):(a-b)
tim min cua bieu thuc
3/(3-x) + 12/(x+1) voi -1<x<3