Kết quả phép tính nhân (2x+1).(x-3) là:
A.2x2+7x-3
B.2x2-5x-3
C.2x2-3
D.x2-5x-2
Thực hiện phép tính:
a)2x(3x2 - 5x + 3) b)-2x2(x2 + 5x - 3) c)-1/2x2(2x3 - 4x + 3)
d) (2x - 1)(x2 +5- 4) c) 7x(x - 4) - (7x + 3)(2x2 - x + 4).
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)
Kết quả của phép tính ( x2 – 5x)(x + 3 ) là :
A. x3 – 2x2 – 15x
B. x3 + 2x2 + 15x
C. x3 + 2x2 – 15x
D. x3 – 2x2 + 15x
Làm tính nhân :
a) 2x. (x2 – 7x -3)
b) ( -2x3 + y2 -7xy). 4xy2
c)(-5x3).(2x2+3x-5)
d) (2x2 - xy+ y2).(-3x3)
e)(x2 -2x+3). (x-4) f) ( 2x3 -3x -1). (5x+2)
a: \(=2x^3-14x^2-6x\)
c: \(=-10x^5-15x^4+25x^3\)
a) 2x. (x2 – 7x -3)
= 2x3- 14x2- 6x
b) ( -2x3 + y2 -7xy). 4xy2
= -8x4y2+ 4xy4- 28x2y3
c)(-5x3).(2x2+3x-5)
= -10x5-15x4+25x3
d) (2x2 - xy+ y2).(-3x3)
=-6x5+ 3x4y -3x3y2
e)(x2 -2x+3). (x-4)
=x3-2x2+3x -4x2+8x-12
=x3-6x2+11x-12
f) ( 2x3 -3x -1). (5x+2)
=10x4-15x2-5x +4x3-6x-2
=10x4+4x3-15x2-11x-2
Bài 1: Làm tính nhân:
a) 2x. (x2 – 7x -3) b) ( -2x3 + y2 -7xy). 4xy2
c)(-5x3). (2x2+3x-5) d) (2x2 - xy+ y2).(-3x3)
e)(x2 -2x+3). (x-4) f) ( 2x3 -3x -1). (5x+2)
g) ( 25x2 + 10xy + 4y2). ( ( 5x – 2y) h) ( 5x3 – x2 + 2x – 3). ( 4x2 – x + 2)
a) \(2x\left(x^2-7x-3\right)=2x.x^2-2x.7x-2x.3=2x^3-14x^2-6x\)
b) \(\left(-2x^3+y^2-7xy\right)4xy^2=\left(-2x^3\right)4xy^2+y^24xy^2-7xy.4xy^2=-8x^4y^2+4xy^4-28x^2y^3\)
c) \(\left(-5x^3\right)\left(2x^2+3x-5\right)=-5x^32x^2-5x^33x-5x^3.-5=-10x^5-15x^4+25x^3\)
d) \(\left(2x^2-xy+y^2\right)\left(-3x^3\right)=-3x^32x^2-3x^3.-xy-3x^3y^2=-6x^5+3x^4y-3x^3y^2\)
e) \(\left(x^2-2x+3\right)\left(x-4\right)=x\left(x^2-2x+3\right)-4\left(x^2-2x+3\right)=x^3-2x^2+3x-4x^2+8x-12=x^3-6x^2+11x-12\)
f) \(\left(2x^3-3x-1\right)\left(5x+2\right)=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)=10x^4-15x^2-5x+4x^3-6x-2=10x^4+4x^3-15x^2-11x-2\)
g)
\(\left(25x^2+10xy+4y^2\right).\left((5x-2y\right)\)
\(=125x^3-50x^2y+20x^2y-20xy^2+20xy^2-8y^3\)
\(=125x^3-30x^2y+8y^3\)
h)
\(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-5x^4+10x^3-4x^4+x^3-2x^2+8x^3-2x^2+4x-12x^2+3x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)
Câu 1. Sử dụng máy tính để định hướng cách phân tích các đa thức sau thành nhân tử
A = x2 + 4x - 5
B = -x2 + 4x +5
C = 2x2 + 5x - 3
D = -2x2 + 5x - 3
E = -2x2 + 7x - 6
F = 2x2 - 7x +6
G = 2x2 + 7x +5
H = 2x2 - x - 6
casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c
casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c
có cả cách này à =)))
menu setup -> 9 -> 2 - > 2 (pt cần phân tích) -> nhập hệ số của pt vào từng biến thích hợp -> ''=''
VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)
vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)
Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)
tương tự nhé
cùng vị trí nên tao lộn thôi =))
Bài 2 :Thực hiện phép tính
a/ (2x – 1)(x2 + 5 – 4) b/ -(5x – 4)(2x + 3)
c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).
Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).
b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ 5x( x – 2000) – x + 2000 = 0 c/ 2x( x + 3 ) – x – 3 = 0
Bài 5: Tính giá trị các biểu thức sau:
a. P = 5x(x2 – 3) + x2(7 – 5x) – 7x2 với x = - 5
b. Q = x(x – y) + y(x – y) với x = 1,5, y = 10
Bài 6: Rút gọn biểu thức:
a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
II/ PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài 1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)
Thực hiện phép chia:
a) ( x 3 - 2 x 2 - 15x + 36) : (x + 4);
b) ( 2 x 4 + 2 x 3 + 3 x 2 - 5x - 20) : ( x 2 + x + 4);
c) (2 x 3 + 11 x 2 + 18x-3) : (2x + 3);
d) (2x3 + 9x2 +5x + 41) : (2x2 - x + 9).
a) Đa thức thương x 2 – 6x + 9.
b) Đa thức thương 2 x 2 – 5.
c) Đa thức thương x 2 + 4x + 3 và đa thức dư -12.
d) Đa thức x + 5 và đa thức dư x – 4.
1) Phân tích đa thức thành nhân tử
a) 2x4-4x3+2x2
b) 2x2-2xy+5x-5y
2) Tìm x, biết:
a) 4x(x-3)-x+3=0
b)(2x-3)2-(x+1)2=0
1.
a) \(2x^4-4x^3+2x^2\)
\(=2x^2\left(x^2-2x+1\right)\)
\(=2x^2\left(x-1\right)^2\)
b) \(2x^2-2xy+5x-5y\)
\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)
\(=2x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(2x+5\right)\)
2 .
a,
\(4x\left(x-3\right)-x+3=0\)
⇒\(4x\left(x-3\right)-\left(x-3\right)=0\)
⇒\(\left(x-3\right)\left(4x-1\right)=0\)
⇒\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)
b,
\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)
⇒\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0
⇒\(\left(x-4\right)\left(3x-2\right)=0\)
⇔\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)
vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)
a) 2x. (x2 – 7x -3)
b) ( -2x3 + y2 -7xy). 4xy2
c)(-5x3). (2x2+3x-5)
d) (2x2 - xy+ y2).(-3x3)
e)(x2 -2x+3). (x-4)
f) ( 2x3 -3x -1). (5x+2)
g) ( 25x2 + 10xy + 4y2). ( 5x – 2y)
h) ( 5x3 – x2 + 2x – 3). ( 4x2 – x + 2)
a,\(4x^2-14x^2-6x=-10x^2-6x\)
các câu còn lại làm tg tuj
a) 2x.(x2 - 7x - 3)
= 2xx2 + 2x(-7x) + 2x(-3)
= 2x2x - 2.7xx - 2.3x
= 2x3 - 14x2 - 6x