tìm các số tự nhiên a và b biết BCNN(a,b)-ƯCLN(a,b)=13
Tìm hai số tự nhiên a,b biết ƯCLN (a,b)=13 và BCNN(a,b)=195
Tìm các số tự nhiên a và b (a<b), biết:
a) ƯCLN ( a, b ) = 15 và BCNN ( a, b ) = 180
b) ƯCLN ( a, b ) = 11 và BCNN ( a, b ) = 484
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
tìm các số tự nhiên a và b ( a < b ) , biết :
a, ƯCLN( a, b) = 15 và BCNN (a,b) = 180
b, ƯCLN(a,b) = 11 và BCNN( a,b ) =484
) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
Tìm hai số tự nhiên a và b biết a > b, a + b = 16 và ƯCLN ( a ,b ) = 4 b) Tìm 2 số tự nhiên a và b biết BCNN ( a, b ) = 180, ƯCLN ( a, b ) =12
Tìm hai số tự nhiên và () có BCNN bằng và ƯCLN bằng .
Theo bài ra ta có:
\(\left\{{}\begin{matrix}a=13.k\\b=13.d\end{matrix}\right.\) (k;d)=1;k<d
13.k.13.d = 715,13 =9295
k.d = 9295:13:13 = 55 = 5. 11
⇒k = 5; d = 11
a = 13.5 = 65
b = 13.11 = 143
Kết luận: a = 65; b = 143
Theo bài ra ta có:
(k;d)=1;k<d
13.k.13.d = 715,13 =9295
k.d = 9295:13:13 = 55 = 5. 11
⇒k = 5; d = 11
a = 13.5 = 65
b = 13.11 = 143
Kết luận: a = 65; b = 143
Tìm các số tự nhiên a, b biết: ƯCLN(a, b) = 5 và BCNN(a, b) = 105
Tìm các số tự nhiên a, b biết: ƯCLN(a, b) = 5 và BCNN(a, b) = 105
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210