tinhs S=(`1+1/1.3).(1+1/2.4).(1+1/3.5)......(1+1/99.100)
ting gia tri cua bieu thuc :A=(1+1/1.3).(1+1/2.4).(1+1/3.5).....(1+1/99.100)
\(A=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)\left(1+\frac{1}{4^2-1}\right)\cdot...\cdot\left(1+\frac{1}{100^2-1}\right)\)
\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{99^2}{98\cdot100}\cdot\frac{100^2}{99\cdot101}=\frac{200}{101}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)......\left(1+\frac{1}{99.100}\right)\)
\(=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)......\left(1+\frac{1}{100^2-1}\right)\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}..............\frac{100^2}{99.100}=\frac{200}{101}\)
T nha
tính nhanh:
A=(1-1/21).(1-1/28).(1-1/36). ... .(1-1/1326)
B=(1+1/1.3).(1+1/2.4).(1+1/3.5). ... .(1+1/99.100)
Giúp với
Thu Gọn:
(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/99.100)
Các bn giúp mik nhé!Mik cần gấp nhớ giải chi tiết nữa nhé!thank you
S=1/1.3+1/3.5+1/5.7+...+1/99.100
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
\(S=\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{99\times101}\) chứ bạn
Câu 1.Tính nhanh
A=(1+1/1.3).(1+1/2.4).(1+1/3.5).....(1+1/99.100)
dấu . là nhân
ai trả lời đúng và nhanh nhất mk tk cho nha
S=1/1.3+1/2.4+1/3.5+......+1/97.99+1/98.100-49/99
\(S=\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{97\cdot99}\right)+\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\right)-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}+\dfrac{1}{2}\cdot\dfrac{49}{100}-\dfrac{49}{99}\)
\(=\dfrac{49}{200}\)
Tính tổng S=1/1.3 + 1/2.4 + 1/3.5+....+1/4.9+ 1/8.10
Tính tổng S= 1/1.3+1/2.4+1/3.5+...+1/4.9+1/8.10
Tính tổng S=1/1.3 +1/2.4+ 1/3.5+....+1/7.9 +1/8.10
S=(1/1.3+1/3.5+.....+1/7.9) + (1/2.4+1/4.6+....+1/8.10)
2S=1/2.(1-1/9+(1/2-1/10))
2S=1/2.(8/9 + 2/5)
2S=1/2.58/45
2S=29/45
S=29/45:2
S=29/90
S=(1/1.3+1/3.5+.....+1/7.9) + (1/2.4+1/4.6+....+1/8.10)
2S=1/2.(1-1/9+(1/2-1/10))
2S=1/2.(8/9 + 2/5)
2S=1/2.58/45
2S=29/45
S=29/45:2
S=29/90
S = (1/1.3 + 1/3.5 + ... + 1/7.9) + (1/2.4 + 1/4.6 + ... + 1/8.10)
S = 2(1/1 - 1/3 + 1/3 - 1/5 + ... + 1/7 - 1/9) + 1/2(1/2 - 1/4 + 1/4 - 1/6 + ... + 1/8 - 1/10)
S = 2.(1 - 1/9) + 1/2.(1/2 - 1/10)
S = 16/9 + 1/5 = 89/45