Hình thang ABCD vuông góc tại A và D, AD = 15 cm; CD = 9 cm. Gọi M là một điểm trên cạnh AD biết rằng MB = 5 cm, MC = 15 cm. Tính góc BMC.
mink sẽ tick cho
Cho hình thang vuông ABCD có A ^ = D ^ = 90 0 , AB = AD = 2 cm, DC = 4 cm và BH vuông góc với CD tại H.
a) Chứng minh ∆ABD = ∆HDB.
b) Chứng minh tam giác BHC vuông cân tại H.
c) Tính diện tích hình thang ABCD
Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A và D. SA=a căn (3), AB=2a, AD=DC=a. Gọi I là trung điểm AB a. Tính góc giữa mp (SDC) và mp (ABCD) b. Tính góc giữa mp (SDI) và mp (ABCD) c. CM (SCI) vuông góc với (SAB) d. CM (SBC) vuông góc với (SAC)
Đề bài thiếu chi tiết định dạng điểm S nên không giải được (ví dụ phải thêm SA vuông góc mặt đáy hoặc gì đó tương tự)
Cho hình thang ABCD vuông tại A, D. 2 đường chéo vuông góc tại O, AB = 15, AD = 20
a, Tính OB, OD, AC
b, Tính diện tích hình thang ABCD
a: BD=căn 15^2+20^2=25cm
OD=AD^2/BD=400/25=16cm
OB=25-16=9cm
AO=căn 16*9=12cm
ΔADC vuông tại D có DO là đường cao
nên AD^2=AO*AC
=>AC=20^2/12=400/12=100/3(cm)
b: DC=căn AC^2-AD^2=căn (100/3)^2-20^2=80/3cm
S ABCD=1/2*(AB+CD)*AD
=1/2*20*(15+100/3)=10*145/3=1450/3cm2
Cho hình thang ABCD, góc A = góc D =90 độ. Hai đường chéo vuông góc với nhau tại O. Biết OB=5,4 cm; OD=15 cm.
a) Tính diện tích hình thang;b) Qua O vẽ 1 đường thẳng song song với hai đáy, cắt AD và BC lần lượt tại M và N. Tính độ dài MN.Cho hình thang ABCD có góc A và góc D là vuông góc. AB = 36 cm ; DC = 45 cm ; AD =40 cm . Trên AD lấy DM = 10 cm , từ M là đường cao thẳng song song có DC cắt BC tại N . Tính S hình thang ABNM.
Diện tích tứ giác ABCD là :
(50+60) x (40+10) : 2 = 2750 (cm2)
Diện tích tam giác BMC là :
2750 - 50 x 40 : 2 - 60 x 10 : 2 = 1450 (cm2)
Xét tam giác BMN và NMC có chung đỉnh M, đáy BN = NC x 4 => S_BMN = S_NMC x 4 Vậy diện tích BMN là :
1450 : (1 + 4) x 4 = 1160 (cm2)
Vậy diện tích hình thang ABNM là :
50 x 40 : 2 + 1160 = 2160 (cm2)
Diện tích tứ giác ABCD là :
(50+60) x (40+10) : 2 = 2750 (cm2)
Diện tích tam giác BMC là :
2750 - 50 x 40 : 2 - 60 x 10 : 2 = 1450 (cm2)
Xét tam giác BMN và NMC có chung đỉnh M, đáy BN = NC x 4 => S_BMN = S_NMC x 4 Vậy diện tích BMN là :
1450 : (1 + 4) x 4 = 1160 (cm2)
Vậy diện tích hình thang ABNM là :
50 x 40 : 2 + 1160 = 2160 (cm2)
các bạn có thể vẽ hình cho mình được ko ????
^-^
Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A và D. SA=a căn (3), AB=2a, AD=DC=a. Gọi I là trung điểm AB. SA vuông góc với (ABCD) a. Tính góc giữa mp (SDC) và mp (ABCD) b. Tính góc giữa mp (SDI) và mp (ABCD) c. CM (SCI) vuông góc với (SAB) d. CM (SBC) vuông góc với (SAC)
c.
Từ câu b ta có AICD là hình vuông \(\Rightarrow CI\perp AB\)
Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CI\)
\(\Rightarrow CI\perp\left(SAB\right)\)
Lại có \(CI\in\left(SCI\right)\Rightarrow\left(SCI\right)\perp\left(SAB\right)\)
d.
I là trung điểm AB \(\Rightarrow CI\) là trung tuyến ứng với AB
Lại có \(CI=AD=a\) (AICD là hình vuông) \(\Rightarrow CI=\dfrac{1}{2}AB\)
\(\Rightarrow\Delta ACB\) vuông tại C
\(\Rightarrow BC\perp AC\) (1)
Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\) (2)
(1);(2) \(\Rightarrow BC\perp\left(SAC\right)\)
\(BC\in\left(SBC\right)\Rightarrow\left(SBC\right)\perp\left(SAC\right)\)
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)
b.
Gọi E là giao điểm AC và DI
I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)
\(\Rightarrow AICD\) là hình bình hành
Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật
\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông
\(\Rightarrow AC\perp DI\) tại E
Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)
Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)
\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)
Cho hình thang ABCD có góc A và góc D vuông , có cạnh AB = 36 cm ,cạnh DC = 45cm , cạnh AD = 40 cm . Trên cạnh AD lấy đoạn DM =10cm , từ M kẻ đường thẳng song song với DC và cắt BC tại N . Tính diện tích hình thang ABCD
Diện tích hình thang abcd là
(45+36)×40:2=1620(cm2)
Chiều cao của hình tam giác ABC là
40-10=30(cm)
Diện tình hình tam giác ABN là
36×30:2=540(cm2)
Diện tích hình tam giác ncd là
45×10:2=225(cm2)
Diện tích hình tam giác and là
1620-(540+225)=855(cm)
Đáy lớn của hình thang abnm là
855×2:40=42,75(cm)
Diện tích hình thang abnm là
(36+42,75)×30:2=1181,25(cm2)
ĐS:1181,25cm2
Diện tích hình thang abcd là
(45+36)×40:2=1620(cm2)
Chiều cao của hình tam giác ABC là
40-10=30(cm)
Diện tình hình tam giác ABN là
36×30:2=540(cm2)
Diện tích hình tam giác ncd là
45×10:2=225(cm2)
Diện tích hình tam giác and là
1620-(540+225)=855(cm)
Đáy lớn của hình thang abnm là
855×2:40=42,75(cm)
Diện tích hình thang abnm là
(36+42,75)×30:2=1181,25(cm2)
ĐS:1181,25cm2
Cho hình thang vuông ABCD, tại A và D, AD = 6cm, CD = 12 cm và AD =17 cm. Trên cạnh AD lấy điểm E sao cho AE = 8cm. Chứng minh góc BEC = 90 độ
Đây nha bn !!
nha
Cho hình thang vuông ABCD vuông góc ở A và D ;AB = 6 cm,AD = 12 cm;BC =\(\frac{2}{3}\)AD.
a)Tính diện tích hình thang ABCD.
b)Kéo dài các cạnh bên AB và và DC,chúng gặp nhau tại K.Tính độ dài cạnh KB
Giusp mình với.Cần gấp lắm
tra mạng