tổng của 1-2+3-4+5-6+...+47-48+49-50
1+3+5+7+...+47+49+...+(-2)+(-4)+9(-6)+...+(-48)+(-50)
1+3+5+7+...+47+49+...+(-2)+(-4)+(-6)+...+(-48)+(-50)
=(-2+1)+(-4+3)+...+(-50+49)
=(-1)+(-1)+(-1)+...+(-1) (25 số -1)
= -25
1/1*2*3*4+1/2*3*4*5+1/3*4*5*6+...+1/47*48*49*
50
50 - 49 + 48 - 47 + ... + 4 -3 + 2-1
Tính tổng
\(\left(50-49\right)+\left(48-47\right)+...+\left(4-3\right)+\left(2-1\right)\)
\(=1\cdot\dfrac{\left(50-1+1\right)}{2}=25\)
50 - 49 + 48 - 47 + ...+ 4 - 3 + 2 - 1
= (50 - 49) + (48 - 47) + ...+ (4 - 3) + (2 - 1)
= 1 + 1 + .... + 1 + 1
= 1 . ( 50 : 2 )
= 1 . 25
= 25
50 - 49 + 48 - 47 + ...+ 4 - 3 + 2 - 1
= (50 - 49) + (48 - 47) + ...+ (4 - 3) + (2 - 1)
= 1 + 1 + .... + 1 + 1
= 1 . ( 50 : 2 )
= 1 . 25
= 25
A) A= - ( 5 - 6 ) - ( 3-4+5-7)
B) P = ( 1+3+5+...+47+49)-(2+4+6+...+48+50)
A = - ( 5 - 6 ) - ( 3 - 4 + 5 - 7 )
A = -5 + 6 - 3 + 4 - 5 + 7
A = ( 6 + 4 ) + ( -5 + (-5) ) + ( -3 + 7 )
A = 10 + (-10) + 4
A = 0 + 4
A = 4
P = ( 1 + 3 + 5 + ... + 47 + 49 ) - ( 2 + 4 + 6 + ... + 48 + 50 )
P = \(\frac{\left(1+49\right)\cdot\left(\left(49-1\right):2+1\right)}{2}\) - \(\frac{\left(2+50\right)\cdot\left(\left(50-2\right):2+1\right)}{2}\)
P = \(625-650\)
P = \(-25\)
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
99-97+95-93+91-89+...+7-5+3-1 = ?
50-49+48-47+46-45+...+4-6+2-1 = ?
Tính nhanh tong sau:A=2/2*3*4+2/3*4*5+.....+2/47*48*49+2/48*49*50
\(A=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{47\cdot48\cdot49}+\frac{2}{48\cdot49\cdot50}\)
\(A=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{47\cdot48}-\frac{1}{48\cdot49}+\frac{1}{48\cdot49}-\frac{1}{49\cdot50}\)
\(A=\frac{1}{2\cdot3}-\frac{1}{49\cdot50}\)
\(A=\frac{1}{6}-\frac{1}{2450}\)
\(A=\frac{611}{3675}\)
mong giúp đc bn.thk cho mk