Chứng tỏ rằng phân số 6n+3/9n+4 tối giản (n thuộc N).
chứng tỏ rằng phân số 8n +3 / 6n +2 là phân số tối giản với n thuộc N
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
chứng tỏ rằng phân số 8n +3 / 6n +2 là phân số tối giản với n thuộc N
chứng tỏ rằng phân số 8n+3/6n+2 là phân số tói giản(n thuộc N)
A = \(\dfrac{8n+3}{6n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 8n + 3 và 6n + 2 là d
Ta có: \(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(8n+3\right)⋮d\\4.\left(6n+2\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
⇒ 24n + 9 - (24n + 8) ⋮ d
⇒ 24n + 9 - 24n - 8 ⋮ d ⇒ 1 ⋮ d ⇒ d = 1
Vậy A = \(\dfrac{8n+3}{6n+2}\) là phân số tối giản (đpcm)
Chứng tỏ rằng với n thuộc N* phân số A = \(\frac{4n-1}{6n-1}\)là phân số tối giản.
có nhiều số lắm cậu cứ lấy số chắn mà thay cho n
Chứng tỏ rằn mọi phân số có dạng 6n - 7/n - 1(n thuộc N) đều là phân số tối giản
Theo bài ra , ta có :
\(\frac{6n-7}{n-1}=\frac{6n-6-1}{n-1}=\frac{6\left(n-1\right)-1}{n-1}=\frac{6\left(n-1\right)}{n-1}-\frac{1}{n-1}=6-\frac{1}{n-1}\)
Mà \(\frac{1}{n-1}\)là phân số tối giản
\(\Rightarrow6-\frac{1}{n-1}\)là p/s tối giản
\(\Rightarrow\frac{6n-7}{n-1}\)là phân số tối giản (ĐPCM)
Chứng tỏ rằng các Phân số sau là Phân số tối giản:
a) 4n+1/6n+1
b) n3+2n/n4+3n2+1 (n thuộc N*)
Chứng tỏ rằng phân số A= \(\frac{6n+5}{2n+1}\)
là phấn số tối giản với mọi n thuộc N
vào câu hỏi tương tự dựa theo cách lm để giải nhé
Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 3/2n + 7
b) 3n + 7/6n + 15
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a) Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
b) Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
Cho A = 3n+2/6n+3
a ,tìm n để A là phân số
b, Chứng tỏ A là phân số tối giản vì mọi n thuộc N
a) Với bất kì n khác -1/2
b) Đặt UCLN(3n + 2 ; 6n + 3) = d
3n + 2 chia hết cho d => 6n + 4 chia hết cho d
=> (6n + 4 - 6n - 3) chia hết cho d
1 chia hết cho d => d = 1
Vậy A ...............