Cho tam giác ABC có AD là tia phân giác góc A, D thuộc BC và BD=CD
Cho tam giác ABC có AB < AC. AD là tia phân giác góc A, D thuộc BC. So sánh BD và CD?
ta có : góc a1= góc a2( gt) => AB=AC( theo tính chất đường phân giác )
xét tam giác abd và tam giác adc có :
ab=ac (cmt)
góc a1= góc a2(gt)
ad chung
=> tam giác abd = tam giác adc
=> bd=cd (2 cạnh tương ứng )
cho tam giác ABC vuông tại A ,có C =30 độ. BD là phân giác của tam giác ABC (D thuộc AC).Kẻ DH vuông góc BC(H thuộc BC) Tia BA cắt HD tại K
a) CM AD=DH
b) SO SÁNH AD và CD
c)CM D là trọng tâm của tam giác BKC
d)CM AD+AK> KC/2
a) Xét tam giác ABD và tam giác HBD có :
\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)
\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )
Chung BD
\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )
\(\Rightarrow AD=DH\left(đpcm\right)\)
b) Xét tam giác DHC vuông tại H có \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )
Mà \(AD=DH\)( câu a )
\(\Rightarrow AD< CD\)
c) \(\widehat{ABC}=180^o-90^o-30^o=60^o\)
Ta có BD là tia phân giác \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)
Xét tam giác BDC có \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)
\(\Rightarrow\)tam giác BDC cân tại D
Mà DH là đường cao \(\left(DH\perp BC\right)\)
\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC
\(\Rightarrow BH=HC\)
Xét tam giác KBH và tam giác KCH có :
\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)
BH = HC
Chung KH
\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)
\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều
\(\Rightarrow\widehat{BKC}=60^o\)
Từ (1) \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)
\(\Rightarrow\widehat{BKH}=30^o\)
Xét tam giác BDK có \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)
\(\Rightarrow\Delta BDK\)cân tại D
Mà AD là đường cao \(\left(AD\perp BK\right)\)
\(\Rightarrow\)AD là trung tuyến tam giác BDK
\(\Rightarrow BA=AK\)
Xét \(\Delta KBC\)có
KH là trung tuyến ( BH = HC )
CA là trung tuyến ( BA = AK )
KH và CA cắt nhau tại D
\(\Rightarrow\)D là trọng tâm tam giác BKC
d) Ta có \(\frac{KB}{2}=AK\)( do AB = AK )
\(AD+AK>\frac{KB}{2}\)
Mà KC = KB
\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)
Vậy ...
Cho tam giác ABC có AB bé hơn AC , kẻ tia phân giác AD (D thuộc BC) , KẺ DM vuông góc AB tại M , DN vuông góc AC tại N a) chứng minh tam giác ADM bằng tam giác ADN b) so sánh BD và CD
1.cho tam giác ABC có AB<AC<BC . Tia phân giác của góc A cắt BC tại D , tia phân giác của góc B cắt AC tại E . Hai tia phân giác AD và BE cắt nhau tại I . So sánh BD và CD
2.cho tam giác ABC có AB<AC . Tia phân giác cắt BC ở D . Kẻ AH vuông góc với BC . Gọi M là trung điểm của BC . Chứng minh rằng tia AD nằm giữa hai tia AH và AM
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm
cho tam giác ABC có BD là tia phân giác của góc B ( D thuộc AC) và AC > AB. Chứng minh: CD >AD
Cho tam giác abc vuông tại a,ad là tia phân giác góc a(d thuộc bc).CMR:1/(ad^2)=1/(bd^2)+1/(cd^2). Cần gấp mn ơi trc 10h càng tốt nhé .·´¯`(>▂
Bài 1:Cho tam giác ABC vuông góc tại A,tia phân giác của góc B cắt AC tại D.Kẻ DH vuông góc tại BC (H thuộc BC)
a)So sánh AB và HB
b)So sánh AD và CD
Bài 2:Cho tam giác ABC có AB<AC.Tia phân giác của góc A cắt BC tại D,đường thẳng đi qua A vuông góc BC tại H
a)C/minh H thuộc tia BD
b)Cho góc B nhỏ.C/minh H nằm giữa B và D
c)Cho M là trung điểm của BC.C/minh D nằm giữa H và M
Bài 1 a, xét tam giác ABD và tam giác HBD có:
BD cạnh chung
\(\widehat{ABD}\)=\(\widehat{HBD}\)(gt)
\(\Rightarrow\)tam giác ABD = tam giác HBD( CH-GN)
\(\Rightarrow\)AB=HB
b,trên tia đối của tia DH lấy O sao cho HD=DO
xét tam giác ADO và tam giác CDH có:
DH=DO( theo trên)
\(\widehat{ADO}\)=\(\widehat{CDH}\)( Vì đối đỉnh)
\(\Rightarrow\)tam giác ADO=tam giác CDH( CH-GN)\(\Rightarrow\)AD=CD
Cho tam giác ABC( AB> AC ), M là trung điểm của BC. AD là phân giác góc BAC ( D thuộc BC). Trên tia đối MA lấy E sao cho MA= ME
a) BE= AC
b) Góc AEB > góc BAE
c) AB + CD> AC +BD
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>BE=AC
b: AC=BE
mà AB>AC
nên BA>BE
=>góc BEA>góc BAE
Cho ∆ABC có AB=AC.Kẻ tia phân giác AD của góc BAC (D thuộc BC)
a. Chứng minh ∆ABD=∆ACD
b. BD=CD
c. Chứng minh AD thuộc BC