Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Van Hung
Xem chi tiết
Luật Lê Bá
Xem chi tiết
Nguyễn Anh Quân
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Rau
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Luật Lê Bá
2 tháng 7 2017 lúc 21:40
sai rồi hehe
Nguyen Duy Dai
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Nguyễn Phan Ngọc Tú
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 22:24

\(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}=\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

Áp dụng BĐT Cauchy ta có : \(\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}y}\le\frac{y-2+2}{2\sqrt{2}y}=\frac{1}{2\sqrt{2}}\)

\(\frac{\sqrt{\left(x-3\right).3}}{\sqrt{3}x}\le\frac{x-3+3}{2\sqrt{3}x}=\frac{1}{2\sqrt{3}}\)

Vậy \(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\le\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=6\\y=4\end{cases}}\)

Vậy ..................................

Nguyễn Phan Ngọc Tú
15 tháng 10 2016 lúc 22:31

tks :)

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Tran Huong
Xem chi tiết
Huy Anh Lê
Xem chi tiết
Huy Anh Lê
5 tháng 1 2016 lúc 17:05

cách làm bạn ơi.điểm rơi là x=y thì ai mak k biết

Momozono Nanami
Xem chi tiết
Trần Phúc Khang
5 tháng 6 2019 lúc 6:47

Ta có \(\left(x+y\right)xy=x^2-xy+y^2\)

=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)

MÀ \(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2,\frac{1}{xy}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^{^2}\)

=> \(\frac{1}{x}+\frac{1}{y}\le4\)

\(A=\frac{1}{x^3}+\frac{1}{y^3}=\frac{x^3+y^3}{x^3y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

Vậy MaxA=16 khi x=y=1/2