\(A=\frac{x+y}{x^2-xy+y^2}=\frac{1}{\left(x+y\right)^2-3xy}=\frac{1}{1-3xy}\)
Ta lại có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Do đó : \(A\ge\frac{1}{1-\frac{3.}{4}}=4\)<=> x = y = 1/2