Cho a,b là hai số nguyên tố khác nhau ; x,y là các số tự nhiên khác 0 và c = a^x X b^y có 10 ước tự nhiên thì số ước tự nhiên của c^2 là .....
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
chứng minh rằng :
a, hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau
b, hai số nguyên lẻ liên tiếp là hai số nguyên tố cùng nhau
c,2n + 1 và 3n + 1 (n thuộc N ) là hai số nguyên tố cùng nhau
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Tìm số nguyên tố nhỏ nhất vừa là tổng của hai số nguyên tố, vừa là tổng của ba số nguyên tố khác nhau, vừa là tổng của bốn số nguyên tố khác nhau, vừa là tổng của năm số nguyên tố khác nhau.
Cho UCLN(a,b)=1. Chứng minh rằng:
a) a và a+b là hai số nguyên tố cùng nhau
b) b và a+b là hai số nguyên tố cùng nhau
c) a và a-b là hai số nguyên tố cùng nhau
d) a.b va a2+b2là hai số nguyên tố cùng nhau
cho a và b là hai số nguyên tố khác nhau. có thể kết luận rằng số m= (a-b).(b-a) là số nguyên âm ko vì sao
mình đg cần gấp
đúng mình tick cho
Vì a và b là 2 số nguyên tố khác nhau nên a > b hoặc a < b
+) a > b => a - b > 0 và b - a < 0
=> m là số nguyên âm (1)
+) a < b => a - b < 0 và b - a > 0
=> m là số nguyên âm (2)
Từ (1), (2) => m là số nguyên âm
cho a,b là hai số nguyên tố cùng nhau. CMR a+b và ab cũng là hai số nguyên tố cùng nhau
CHỨNG MINH RẰNG
A) Hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau .
B) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau .
C) 2n + 1 và 3n + 1 ( n \(\in\)N ) là hai số nguyên tố cùng nhau .
LÀM NHANH MK CẦN GẤP
A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.
Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:
n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.
Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
C) Gọi a là ƯCLN của 2n+1 và 3n+1 => 2n+1 và 3n+1 chia hết cho a => 6n+3 và 6n+2 chia hết cho a => (6n+3)-(6n+2) chia hết cho a hay 1 chia hết cho a => a=1 => 2n+1 và 3n+1 nguyên tố cùng nhau.
Vậy 2n+1 và 3n+1 nguyên tố cùng nhau.
cho a,b là hai số nguyên tố cung nhau chứng tỏ rằng các số a và b là hai số nguyên tố cùng nhau với a<b