Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Phạm Hoài
Xem chi tiết
Phạm Thùy Chi
8 tháng 5 lúc 10:41

a + b + c = 0 

=> a+b=-c

a3   + b3  +c3  = a^3 + b^3 +3a^2b +3ab^2 -3a^2b-3ab^2 +c^3

                      = (a+b)^3 -3ab(a+b)+c^3

                       = -c^3 +3abc+c^3

                        = 3abc

=> a^3+b^3+c^3 = 3abc

Lê Nguyễn Hồng Ngọc
Xem chi tiết
Cô Nàng Lạnh Lùng
19 tháng 1 2016 lúc 13:29

ta có:

A+B=(a+b-5)+(-b-c+1)

      =a+b-5-b-c+1

      =a-c+(b-b)-(5-1)

      =a-c-4 (1)

Lại có:

C-D=(b-c-4)-(b-a)

     =b-c-4-b+a

     =(b-b)+a-c-4

     =a-c-4 (2)

Từ (1) và (2)=>A+B=C-D (vì cùng bằng a-c-4)

đỗ lan anh
Xem chi tiết
Kim Chi 202
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
Lê Thị Thùy Trang
16 tháng 7 2016 lúc 9:29

ta có: A+B+C=180

=> C+B=180-a=180-100=80

B=(80+20):2=50

C=80-50=30

Vây B=50, C=30

Lê Hồng Ngọc
Xem chi tiết
tran nguyen bao quan
23 tháng 11 2018 lúc 17:44

y x O 1 3 C(3;1) A(2;0) B(0;-2) H

Kẻ CH⊥Ox

Ta có OB=\(\left|-2\right|=2\)

OA=\(\left|2\right|=2\)

\(OH=\left|3\right|=3\)

CH=\(\left|1\right|=1\)

Xét △OAB vuông tại O có

OA=OB=2

Suy ra △OAB vuông cân tại O

\(\Rightarrow\widehat{OAB}=45^0\)(1)

Ta có OH=AH+OA\(\Leftrightarrow AH=AH-OA=3-2=1\)

Xét △CHA vuông tại H có

AH=CH=1

Suy ra △CHA vuông cân tại H

\(\Rightarrow\)\(\widehat{CAH}=45^0\)(2)

Từ (1),(2)\(\Rightarrow\widehat{OAB}=\widehat{CAH}=45^0\)(3)

Mà O,A,H thẳng hàng(4)

Từ (3),(4)\(\Rightarrow\widehat{OAB}\)\(\widehat{CAH}\) là hai góc đối đỉnh

\(\Rightarrow\)A,B,C thẳng hàng

Nguyễn Lê Phước Thịnh
23 tháng 11 2022 lúc 9:13

\(\overrightarrow{AB}=\left(-2;-2\right)\)

\(\overrightarrow{AC}=\left(1;1\right)\)

Vì -2/1=-2/1

nên A,B,C thẳng hàng

Trung Nguyen
Xem chi tiết
le thai khanh huyen
Xem chi tiết
Khổng Xuân Đức
Xem chi tiết
nhật
Xem chi tiết
Đặng Hoàng Long
7 tháng 3 2019 lúc 22:09

TRẢ LỜI:

Áp dụng BĐT bunhiacopxki 
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1 
=> a² + b² + c² ≥ 30

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 30

nhok ngáo ngơ - 2k8 ( th...
7 tháng 3 2019 lúc 22:12

mk ko bt sorry 

ai như vậy thì k mk nha

Phạm Tuấn Đạt
7 tháng 3 2019 lúc 22:26

Có \(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{3}\ge\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{27}\ge abc\Leftrightarrow abc\le\frac{1}{27}\)

Có \(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\ge\frac{1+1}{3\sqrt[3]{a^3b^3c^3}}=\frac{2}{3.abc}\ge\frac{2}{3.\frac{1}{27}}=\frac{2}{\frac{1}{9}}=18\)