Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
son goku
Xem chi tiết
Hoang Thai
Xem chi tiết
Akai Haruma
13 tháng 5 2023 lúc 20:51

Đề lỗi công thức khá khó đọc. Bạn xem lại.

to tung
Xem chi tiết
Lê Bảo Kỳ
7 tháng 5 2018 lúc 22:33

tao có:

1/2.3.4.....98.M=(1+1/98)+(1/2+1/97)+...+(1/49+1/50)

1/2.3.4.....98.M=99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ cua tử m là:n1,n2,...n49

suy ra M=99.(n1+n2+...+n49).2.3.....98/2.3.....98

M=99.(n1+n2+...+n49) chia het cho 99 suy ra đéo phải chứng minh

Pháp Nguyễn Văn
Xem chi tiết
Thư Nguyễn Nguyễn
Xem chi tiết
Bùi phương nga
Xem chi tiết
Trần Thọ Mạnh
29 tháng 4 2015 lúc 9:27

Ta có : M= [(1+1/98)+(1/2+1/97)+...+(1/49+1/50)].2.3.4...98

             M=(99/1.98+99/2.97+...+99/49.50).2.3.4...98

             M=99(1/1.98+1/2.97+...+1/49.50).2.3.4...98

             M=99(k1+k2+...+k49/1.2.3.4...97.98).2.3.4...98

             M=99(k1+k2+...+k49)

Vậy M chia hết cho 99

Lê Thành Trung
27 tháng 4 2015 lúc 22:45

TRONG PHÉP NHÂN CÓ 3X33=99=>M LUÔN CHIA HẾT CHO 99

Đinh Khắc Duy
14 tháng 3 2017 lúc 17:05

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{98}\right)\cdot2\cdot3\cdot4\cdot.........\cdot98\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{98}\right)\cdot\left(3\cdot33\right)\cdot2\cdot4\cdot......\cdot32\cdot34\cdot........\cdot98\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{98}\right)\cdot99\cdot2\cdot3\cdot.......\cdot32\cdot34\cdot........98\)

Vì \(99⋮99\Rightarrow M⋮99\)

kazuto kirigaya
Xem chi tiết
ST
10 tháng 5 2017 lúc 17:55

Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)

\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)

\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)

\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)

\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)

hoàng thu phương
Xem chi tiết
Trần Thùy Trang
23 tháng 3 2016 lúc 19:14

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

Tôi không biết
1 tháng 4 2017 lúc 21:01

Thùy Trang giỏi quá!!!

Erza Scarlet
24 tháng 1 2018 lúc 11:47

coppy sách chứ gì

dothianhdao
Xem chi tiết