Cho M=(1+1/2+1/3+...+1/98).2.3.4 ... 98. Chứng tỏ rằng M chia hết cho 99.
Cho M = (1 + 1/2+1/3+...+1/98).2.3.4...98
Chứng tỏ rằng M chia hết cho 99
Bài 5. Chứng tỏ rằng M = 1 1 1 2.3.4...98. 1 ... 2 3 98 + + + + chia hết cho 99
Đề lỗi công thức khá khó đọc. Bạn xem lại.
Cho M=( 1+1/2+1/3+1/4+...+1/98).2.3.4...98
Chứng tỏ M chia hết cho 99
tao có:
1/2.3.4.....98.M=(1+1/98)+(1/2+1/97)+...+(1/49+1/50)
1/2.3.4.....98.M=99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ cua tử m là:n1,n2,...n49
suy ra M=99.(n1+n2+...+n49).2.3.....98/2.3.....98
M=99.(n1+n2+...+n49) chia het cho 99 suy ra đéo phải chứng minh
Cho M 1 1 2 1 3 ... 1 98 .2.3.4 ... 98. Chứng tỏ rằng M chia hết cho 97
Cho M=\(\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{98}\right).2.3.........98\)
Chứng tỏ rằng M chia hết cho 99
Cho \(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4...98\). Chứng minh M chia hết cho 99
Ta có : M= [(1+1/98)+(1/2+1/97)+...+(1/49+1/50)].2.3.4...98
M=(99/1.98+99/2.97+...+99/49.50).2.3.4...98
M=99(1/1.98+1/2.97+...+1/49.50).2.3.4...98
M=99(k1+k2+...+k49/1.2.3.4...97.98).2.3.4...98
M=99(k1+k2+...+k49)
Vậy M chia hết cho 99
TRONG PHÉP NHÂN CÓ 3X33=99=>M LUÔN CHIA HẾT CHO 99
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{98}\right)\cdot2\cdot3\cdot4\cdot.........\cdot98\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{98}\right)\cdot\left(3\cdot33\right)\cdot2\cdot4\cdot......\cdot32\cdot34\cdot........\cdot98\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{98}\right)\cdot99\cdot2\cdot3\cdot.......\cdot32\cdot34\cdot........98\)
Vì \(99⋮99\Rightarrow M⋮99\)
Cho:\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4...98\)
Chứng minh rằng A chia hết cho 99
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)
\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)
Cho a = (1/1+1/2+1/3+...+1/98).2.3.4...98
Chứng minh A chia hết cho 99Cho B =1/1+1/2+1/3+...+1/96 và B bằng phân số a/b . chứng minh rằng A chia hết cho 97
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
CHO M = (1+1\2+1\3+......+1\98)*(2.3.....98) CHỨNG TỎ RẰNG M CHIA HET CHO 99