chứng tỏ rằng với mọi số thực a,b cùng dấu ta luôn có :
a) \(\frac{1}{a}<\frac{1}{b}\)
b) \(\frac{a}{b}+\frac{b}{a}\ge2\)
chứng tỏ rằng với mọi số thực a,b bất kì ta luôn có
a) \(a^2+b^2\ge2ab\)
b) \(\frac{a^2+b^2}{2}>ab\)
a) giả sử \(a^2+b^2\ge2ab\)
=> \(a^2+b^2-2ab\ge0\)
=> \(\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b)
vậy điều giả sử là đúng
b) áp dụng BĐT ở phần a ta được \(\frac{a^2+b^2}{2}\ge\frac{2ab}{2}=ab\)
a) Vì, ta có:
\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)(dpcm)
b) tu cau a, ta có:
\(a^2+b^2\ge2ab\Rightarrow\frac{a^2+b^2}{2}\ge ab\)(dpcm)
Dấu bằng xảy ra khi và chỉ khi a+b.
chứng tỏ rằng với mọi số thực a,b cùng dấu ta luôn có:
Nếu a > b thì
a) \(\frac{1}{a}>\frac{1}{b}\)
b) \(\frac{a}{b}+\frac{b}{a}\ge2\)
a) phần a sai đề rồi bạn à!!!!!!!!
b) áp dụng BĐT cô si ta có \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
bạn chuyển vế sang rồi qui đồng là ra thôi
chứng minh rằng với mọi số thực a,b ta luôn có
\(â^2+b^2+b+\frac{5}{2}\ge ab+2a\)
\(a^2+b^2+b+\frac{5}{2}\ge ab+2a\)
<=> \(a^2-2a-ab+b^2+b+\frac{5}{2}\ge0\)
<=> \(a^2-\left(2+b\right)a+b^2+b+\frac{5}{2}\ge0\)
<=> \(\left(a-\frac{2+b}{2}\right)^2-\frac{\left(2+b\right)^2}{4}+b^2+b+\frac{5}{2}\ge0\)
<=> \(\left(a-\frac{2+b}{2}\right)^2-\frac{\left(2+b\right)^2}{4}+b^2+b+\frac{5}{2}\ge0\)
<=> \(\left(a-\frac{2+b}{2}\right)^2+\frac{3b^2}{4}+\frac{3}{2}\ge0\) đúng với mọi a; b
Nhưng không xảy ra dấu bằng. Bạn xem lại đề nhé!
Bài 3 : (3đ)
1. Chứng minh rằng với hai số thực bất kì a,b ta luôn có : \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Dấu bằng xảy ra khi nào ?
2. Cho ba số thực a,b,c không âm sao cho \(a+b+c=1\)
Chứng minh : \(b+c\ge16abc\) . Dấu bằng xảy ra khi nào ?
Nhân tiện em cũng hỏi luôn là tại sao khi em đăng bài mặc dù em đã điền đủ lớp môn ; mạng không lag mà sao vẫn không thể đăng bài được . Em phải mất tận 2 lần ghi lại đề bài mới có thể đăng bài được.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
Chứng minh rằng với mọi số nguyên dương a, b, c ta luôn có: \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
day ko phai lop 4ok
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(\left(b+c\right)\sqrt[k]{\frac{bc+1}{a^2+1}}+\left(a+c\right)\sqrt[k]{\frac{ac+1}{b^2+1}}+\left(a+b\right)\sqrt[k]{\frac{ab+1}{c^2+1}}\ge6\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có.
Gọi a,b,c là độ dài 3 cạnh của 1 tam giác có 3 góc nhọn. Chứng minh rằng với mọi số thực x,y,z ta luôn có \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)lớn hơn \(\frac{2x^2+2y^2+2z^2}{a^2+b^2+c^2}\)
Cho pt: x²-2(m-1)x+2m-5 a, chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m b, Tìm m để pt có 2 nghiệm cùng dấu . Khi đó 2 nghiệm mang dấu gì
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm cùng dấu thì 2m-5>0
hay m>5/2
chứng tỏ rằng .Với mọi số nguyên n thì n+4.n+7 luôn là 1 số chẵn lưu ý n+4 có dấu ngoặc,n+7 cũng có dấu ngoặc
Mọi số tự nhiên n đều được viết dưới dạng : 2k hoặc 2k + 1
+ Nếu n = 2k => n + 4 = 2k + 4 chia hết cho 2
=> ( n + 4 ) ( n + 7 ) chia hết cho 2 ( 1 )
+ Nếu n = 2k + 1 => n + 7 = 2k + 1 + 7
= 2k + 8 chia hết cho 2
=> ( n + 4 ) ( n + 7 ) chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) => ( n + 4 ) ( n + 7 ) chia hết cho 2
=> ( n + 4 ) ( n + 7 ) là số chẵn