CMR:
a, 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/256 <1
b, 1/3 - 2/32 + 3/33 - 4/34 + .... + 99/399 - 100/ 3100 < 3/16
1/2+1/4+1/8+1/16+...+1/256+1/512
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}+\frac{1}{512}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A\cdot2-A=1-\frac{1}{512}\)
\(A=\frac{511}{512}\)
1/2+1/4+1/8+1/16+...+1/256+1/512(gọi A là tổng các PS trên)
A*2=(1+1/2+1/4+1/8+...+1/128+1/256)/2
A*2-A=1+1/2+1/4+1/8+...+1/128+1/256-1/2-1/4-1/8-1/16-...-1/256-1/512.
A=1-1/512
A=511/512.
Kết bạn với mình nha!
1/2 + 1/4 + 1/8 + 1/16 +...+ 1/256 + 1/512
1/2+1/4+1/8+1/16...+1/128+1/256=
1/2+1/4+1/8+1/16+........+1/256+1/512
Giúp mình chút nha!
Ta có :1/2+1/4=1-1/4=3/4
1/2+1/4+1/8=1-1/8=7/8
Tương tự
Vậy 1/2+1/4+1/8+1/16+....+1/256+1/512
=1-1/512
=511/512
K cho nha đảm bảo đúng 100% vì cô mk dạy rồi !
E = 1/2 + 1/4 + 1/8 + 1/16 + ...... + 1/128 + 1/256
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^2}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{1}{2^7}\)
E= 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256
2E = 2 ( 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256 )
= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> E = 2E - E
= (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 )
= 1 - 1/256
= 255/256
k nhá, thanks
\(E=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(E=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(E=1-\frac{1}{2^8}\)
\(E=1-\frac{1}{256}\)
\(E=\frac{255}{256}\)
S=1/2+1/4+1/8+1/16+...+1/128+1/256 = ?
S= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2S= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>S = 2S-S =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256
255/256
ht
và
NHỚ K CHO MIK NHA!!!!!!!!!!!!!!!!!
1/2+1/4+1/6+1/8+1/16+...+1/256+1/512 = ?
Đặt A=1/2+1/4+1/6+1/8+1/16+...+1/256+1/512
=(1/2+1/4+1/8+1/16+...+1/256+1/256-1/512)+1/6
=(1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+...+1/128-1/256+1/256-1/512)+1/6
=1-1/512+1/6
=1789/1536
Vậy A=1789/1536
Tính:
A= 1/2+1/4+1/8+1/16+1/64+1/128+1/256
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\) + \(\dfrac{1}{256}\)
2A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)
2A - A = 1 - \(\dfrac{1}{256}\)
A = \(\dfrac{255}{256}\)
e =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
\(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(2\times E=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\)
\(2\times E-E=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{256}\right)\)
\(E=1-\dfrac{1}{256}\)
\(E=\dfrac{256}{256}-\dfrac{1}{256}\)
\(E=\dfrac{255}{256}\)
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
Tính \(S=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
Dùng sai phân như sau
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)=1-\frac{1}{256}\)
Vậy \(S=1-\frac{1}{256}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(=\frac{128+64+32+16+8+4+2+1}{256}\)
\(=\frac{255}{256}\)
#Hok tốt