tìm max A=$$a^3*b+b^3*a biết a^2+b^2=1
tìm max A=$^{a^3\cdot b-b^3\cdot a}$a^3*b+b^3*a biết a^2+b^2=1
tìm max A=$$a^3*b+b^3*a biết a^2+b^2=1
đơn giản mà!
\(a^3b+b^3a=ab\left(a^2+b^2\right)=ab\le\frac{a^2+b^2}{2}=\frac{1}{2}\)
tìm max A=$$a^3*b+b^3*a biết a^2+b^2=1
tìm max A=$$a^3*b+b^3*a biết a^2+b^2=1
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm min, max của \(\dfrac{a}{b^2+c^2+1}+\dfrac{b}{c^2+a^2+1}+\dfrac{c}{a^2+b^2+1}\) biết a+b+c=3
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
tìm max A=\(^{a^3\cdot b-b^3\cdot a}\) biết a^2+b^2=1