a/b là psố tối giản chứng tỏ a.b/a+b cũng là phân số tối giản
Cho a phần b là psố chưa tối giản, CMR psố a+b phần b cũng chưa tối giản ( a,b thuộc Z, b khác 0)
\(\frac{a}{b}\) chưa tối giản <=> a và b có UCLN lớn hơn 1
giả sử a chia hết cho d(d>1)
b chia hết cho d(d>1)
=> a+b chia hết cho d
mà b cũng chia hết cho d
=> \(\frac{a+b}{b}\) chưa tối giản
cho phân số a/b tối giản
CMR: phân số a+b/a.b và a-b/a.b cũng tối giản
Cho phân số \(\frac{a}{b}\) là phân số tối giản . Chứng tỏ rằng phân số \(\frac{a}{a+b}\) cũng là phân số tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\) là tối giản thì phân số \(\frac{a+b}{b}\) cũng tối giản. Suy ra \(\frac{246913579}{123456790}\) là tối giản.
làm sao làm sao, gấp lắm, sắp nộp rùi
Google để chơi à
Lên Google Search tìm xong
Không có mới đăng lên
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\)là phân số tối giản thì phân số \(\frac{a+b}{b}\)cũng là phân số tối giản.
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
Cho\(\frac{a}{b}\)là phân số tối giản (a,b thuộc \(N^{sao}\)).Chứng tỏ rằng \(\frac{a}{a+b}\)cũng là phân số tối giản.
cho a/b là phân số tối giản. chứng minh rằng a-2b/b cũng là phân số tối giản
\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.
Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^
cho \(\frac{a}{b}\)là phân số chưa tối giản , chứng tỏ rằng phân số \(\frac{a+b}{b}\)cũng chưa tối giản ( voi a,b,c thuoc Z , b khac 0 )
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.
Với mọi STN n , chứng tỏ B=4n+7 phần 6n+11 là psố tối giản