Cho tỉ lệ thức a+b+c/a+b-c =a-b+c/a-b-c trong đó b khác 0 . khi đó c=
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\). Trong đó b khác 0
Khi đó c = ...?
cho tỉ lệ thức a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0 . chứng minh rằng c = 0
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1.\) (T/c dãy tỷ số băng nhau)
\(\Rightarrow a+b+c=a+b-c\Rightarrow2c=0\Rightarrow c=0\)
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
cho tỉ lệ thức
a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0. chứng minh rằng c=0
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Theo t/c dãy tỉ số=nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\frac{2b}{2b}=1\)
\(=>a+b+c=a+b-c=>c=-c=>c-\left(-c\right)=0\)
\(=>c+c=0=>2c=0=>c=0\)
Vậy c=0
cần 2 trường hợp:
- a+b=0
- a+b khác 0 là trường hợp đã làm
cho tỉ lệ thức a+b+c/a+b-c=a-b+c/a-b-c trong đó b khác o. Chứng minh c=0
Ta có \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)(dãy tỉ số bằng nhau)
Khi đó a + b + c = a + b - c
<=> c = - c
<=> 2 x c = 0
<=> c = 0(đpcm)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
\(\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(a^2+ab+ac-ab-b^2-bc-ac-bc-c^2=a^2+ab-ac-ab-b^2+bc+ac+cb-c^2\)
\(a^2-b^2-c^2-2bc=a^2-b^2-c^2+2bc\)
\(-2bc=2bc\)
mà \(b\ne0\)
thì \(-2bc;2bc\)trái dấu
vậy để \(-2bc=2bc\)thì \(c=0\)
\(< =>ĐPCM\)
1.cho tỉ lệ thức: a+b+c/a+b-c=a-b+c/a-b-c trong đó b khác 0. cmr:c=0
2.cmr ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau:
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
GIÚP MÌNH ĐI CÁC BẠN ƠI!
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) trong đó b khác 0.Chứng minh c=0
Ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{2a+2c}{2a-2c}=\frac{2\left(a+c\right)}{2\left(a-c\right)}=\frac{a+c}{a-c}\left(1\right)\)\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a+c}{a-c}=1\)
\(\Leftrightarrow a+c=a-c\Leftrightarrow a+c-a+c=0\Leftrightarrow2c=0\Leftrightarrow c=0\)(đpcm)
phần trên bài giải của bạn đúng nhưng đến phía dưới thì bạn ghi sai thành ra sai đáp án: đáng lẻ phải bằng 2c/-2c=-1
Cho tỉ lệ thức : a+b+c/a+b-c = a-b+c/a-b-c
Trong đó b # 0. CMR : c= 0
Cho a+d = b+c và a2+b2=b2+c2 (b,d khác 0). Khi đó 4 số a,b,c,d lập thành tỉ lệ thức là