Có cặp c,y nguyên (a,b) thỏa mãn
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}vàa+b=2000\)
có mấy cặp số nguyên a,b thỏa mãn \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\) và a+b=2000
Bài 1
a,So sánh hai số sau \(4^{127}\)và \(81^{43}\)
b, Tìm số nguyên x thỏa mãn \(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{x.\left(x+1\right):2}=\frac{2015}{336}\)
Bài 2
Cho phân số \(A=\frac{6n+1}{4n+3}\)(với b nguyên)
a Tìm giá trị n nguyên âm để A có giá trị là số nguyên
b, Tìm giá trị n để A là phân số không rút gọn được
Bài 3
a,Tìm các cặp giá trị x,y nguyên thỏa mãn \(\frac{x}{8}-\frac{2}{2y+3}=\frac{7}{12}\)
b, Cho phép toán * thỏa mãn với hai số tự nhiên a và b ta có a*b= 3a+\(b^a\)Tìm các số nguyên tố x,y sao cho 2*x+y*4-8 cũng là số nguyên tố
bài 1: cho x, y thỏa mãn \(\frac{3x-y}{x+1}=\frac{1}{2}\)giá trị của tỉ số \(\frac{x}{y}bằng\)
(kết quả là phân số tối giản)
Bài 2:Giá trị của x thỏa mãn:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
Bài 3: Số cặp số nguyên(x,y) thỏa mãn
x+y+xy=3
Bài 4: Số cặp số nguyên dương a,b thỏa mãn\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Mình chỉ cần kết quả thui
TRẢ LỜI ĐÚNG LIKE CHO
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
Có bao nhiêu cặp số nguyên dương a và b thỏa mãn \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{3}{2}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\)
\(\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2\left(a+b+1\right)=ab\Leftrightarrow2a+2b+2-ab=0\)
\(\Leftrightarrow2a-ab-4+2b+6=0\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\)
\(\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)
Đến đây chắc dễ rồi
a)Tìm các cặp số (x,y) thỏa mãn điều kiện x3+y3=x4+y4=1
b)Cho a,b,c là các số dương thỏa mãn a+b+c=3
Chứng minh rằng \(\frac{1+a}{1+b^2}+\frac{1+b}{1+c^2}+\frac{1+c}{1+a^2}\ge3\)
b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:
\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)
\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
a)Tìm các cặp số (x,y) thỏa mãn điều kiện x3+y3=x4+y4=1
b)Cho a,b,c là các số dương thỏa mãn a+b+c=3
Chứng minh rằng \(\frac{1+a}{1+b^2}+\frac{1+b}{1+c^2}+\frac{1+c}{1+a^2}\ge3\)
Bài 1 :số cặp số nguyên (x,y)thỏa mãn
x+y+xy=3
bài 2:số cặp số nguyên dương a và b thỏa mãn:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Mình chỉ cần kết quả thui
làm thế nào để ấn được giá trị tuyệt đối ở đây zợ?
1 : Chứng minh rằng : \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\) chia hết cho 120 ( với \(x\inℕ\))
2 . Cho ba số a , b , c khác 0 thỏa mãn điều kiện :
\(\frac{3a+b+c}{a}+\frac{a+3b+c}{b}+\frac{a+b+3c}{c}\)
Tính giá trị biểu thức \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
3 Tìm các cặp số nguyên \(\left(x;y\right)\)thỏa mãn \(x+2y=3xy+3\)
1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100
= 3x(3 + 32 + ... + 3100)
= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ... + (397 398 + 399 + 3100)]
= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]
= 3x(120 + 34.120 + .... + 396.120)
= 3x.120.(1 + 34 + .... + 396)
=> \(M⋮120\)(ĐPCM)
2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Nếu a + b + c = 0
=> a + b = - c
b + c = -a
c + a = -b
Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
Vậy nếu a + b + c = 0 thì P = -3
nếu a + b + c \(\ne\)0 thì P = 6
Ta có :
\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)
\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)
\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)
\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)
Vì \(120⋮120\)
\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)
\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)
Câu 3 mk test thôi nhé , mk chưa thử lại đâu :P
ta có : x+2y=3xy+3
=>yx+2y=3xy+3y
=>y.(x+2)=y.[3.(x+1)]
=>x+2=3x+3
=>-2x=1
=>x= -1/2
Thay vào , Ta có :
-1/2+2y=-3y/2+3
=>y/2=7/2
=>y=7
vì x= -1/2
=>x;y thuộc tập hợp rỗng :>
a)Tìm các cặp số (x,y) thỏa mãn điều kiện x3+y3=x4+y4=1
b)Cho a,b,c là các số dương thỏa mãn a+b+c=3
Chứng minh rằng \(\frac{1+a}{1+b^2}+\frac{1+b}{1+c^2}+\frac{1+c}{1+a^2}\ge3\)