Kí hiệu số nguyên tố thứ n là pn ( n ở dưới ) . Chứng minh rằng pn<3n với n>12
ký hiệu số nguyên tố thứ n là pn. chứng minh rằng pn >+ 3n với n >= 12
Cho số tự nhiên n lớn hơn hoặc bằng 2. gọi p1, p2, ... ,pn là những số nguyên tố sao cho pn nhỏ hơn hoặc bằng n + 1. đặt A = p1 . p2 . ... . pn. Chứng minh rằng trong dãy số các số nguyên tố liên tiếp A + 2, A +3, ... , A + (n + 1) không chứa 1 số nguyên tố nào
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Với mỗi số nguyên dương n, kí hiệu Sn = 1!+2!+···+n!. Chứng minh rằng tồn tại số nguyên dương k sao cho Sk có ít nhất một ước nguyên tố lớn hơn 3^2019
Chứng minh rằng a=n+1 không phải là số nguyên tố và các ước số nguyên tố của nó bé hơn pn, trong đó pn là số nguyên tố thứ n, pn>2.
Chứng minh rằng số nguyên tố thứ n nhỏ hơn 2^(2^n)
1. Tìm số nguyên tố, biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố
2. Cho ba số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước là d đơn vị. Chứng minh rằng d chia hết cho 6
3. Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là SNT. Chứng minh rằng p + 1 chia hết cho 6
4. Cho p và p + 4 là các SNT ( p > 3). Chứng minh rằng p + 8 là hợp số
5. Cho p và 8p - 1 là các SNT. Chứng minh rằng 8p + 1 là hợp số
6. Tìm tất cả các số tự nhiên n để mỗi số sau đều là SNT : n + 1 : n + 3 ; n + 7 ; n + 9 ; n + 13 ; n + 15
Giúp mk vs, mk đang cần gấp lắm nhé! Ai lm trc mk sẽ k cho. Các cậu bt lm bài nào thì chỉ cho mk nhé!
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
1. Gọi số M là số lẻ, Q là số chẵn, nguyên tố cần tìm là P ( P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng)
- P = A + 2 ( M + Q = M )
- P = B - 2 ( M - Q = M )
- A = P - 2; B = P + 2
P + 2; P; P - 2 ⇒ 3 số lẻ liên tiếp.
- P ≠ 1 vì P là số nguyên tố.
- P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng.
- P ≠ 3 vì 3 = A + 2; 3 = 1 + 2 ( 1 không phải là số nguyên tố )
- P = 5 vì A + 2 = 5 = B - 2
3 + 2 = 5 = 7 - 2
⇒ P = 5
Bài 1:
a) Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và hiệu của hai số nguyên tố
b) Cho P là số nguyên tố lớn hơn 3, biết P + 2 cũng là số nguyên tố. Chứng minh rằng P + 1 chia hết cho 6
c) Cho N là số nguyên tố lớn hơn 3. Hỏi N2 + 2018 là số nguyên tố hay hợp số. Vì sao?
Với mỗi số nguyên dương \(k\), kí hiệu là \(k!=1.2.3.............k\) . Cho số nguyên n > 3. Chứng minh rằng An = không thể biểu diễn dưới dạng \(a^b\), với a,b là các số nguyên, b > 1.
ta chứng minh : A = 1!+2!+...+n! ko phải là số chính phương
ta có: 1!+2!+3!+4! chia 10 dư 3
5!+6!+...+n! chia hết cho 10
vậy A chia 10 dư 3 => A ko phải là số chính phương nên A ko thể là lũy thừa vs số mũ chẵn (1)
* chứng minh A ko thể là lũy thừa vs số mũ lẻ
+) với n 4 => 1!+2!+3!+4! = 33 ko là lũy thừa 1 số nguyên
+) n lớn hơn hoặc bằng 5
ta có: 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+...+n! chia hết cho 9
=> A chia hết cho 9
+) ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia 27 dư 9 (2)
từ (1) và (2) => A ko phải là lũy thừa của 1 số nguyên ( vs n>3 ; b>1 )
Cho số tự nhiên n > 5 , chứng minh rằng n viết được dưới dạng tổng ba số nguyên tố.
+) Nếu n chẵn , Viết n dạng n = 2 + m ; m chẵn và > 3
+) Nếu n lẻ, Viết n dạng n = 3 + m ; m chẵn và > 2
Theo mệnh đề EuLer: Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố
=> Nếu n chẵn hay lẻ thì luôn biểu diễn được dưới dạng tổng của 3 số nguyên tố
*) Tuy nhiên, mệnh đề EuLer hiện tại chưa được giải quyết trọn vẹn. Bài này đưa ra nếu giả sử đã chứng minh mệnh đề EuLer!