Tam giác BCD vuông tại B. BH là đường cao kẻ từ B xuống CD. Biết rằng CB = 8 và DB = 6.
tam giác BCD vuông tại B . BH là đường cao kẻ từ B xuống CD. Biết rằng DC=26 và BC=24 BH=?
Chịu luôn mik cũng đang thắc mắc bài này
Tam giác FGI vuông tại F, FH là đường cao kẻ từ F xuống GI. Biết Rằng GF = 16cm, IF = 12cm. Tính FH
CÓ PHẢI KO
KO PHẢI THÌ THÔI NHÉ
Hệ thức lượng:
\(\Delta FEG\left(\widehat{F}=90^o\right)\) có:
\(\frac{1}{FH^2}=\frac{1}{FG^2}+\frac{1}{FI^2}\Leftrightarrow\frac{1}{FH^2}=\frac{1}{16^2}+\frac{1}{12^2}\Leftrightarrow FH=9,6\)
Cho tam giác MNP vuông tại M (MN < MP). Kẻ đường cao MK; đường phân
giác NI. Lấy điểm E thuộc cạnh NP sao cho NM = NE. Chứng minh rằng:
1) tam giác MIE là tam giác cân 2) ME là tia phân giác của góc KMP
3) Gọi Q là giao điểm của MK và NI. Chứng minh: tam giác MIQ là tam giác cân
4) Gọi F là giao điểm của tia EI và tia NM. Chứng minh: ME // FP.
giúp mình với mai mình đi học rồi ,cảm ơn mọi người !
1: Xét ΔNMI và ΔNEI co
NM=NE
góc MNI=góc ENI
NI chung
=>ΔNMI=ΔNEI
=>IM=IE
=>ΔIME cân tại I
2: góc KME+góc NEM=90 độ
góc PME+góc NME=90 độ
mà góc NEM=góc NME
nên góc KME=góc PME
=>ME là phân giác của góc KMP
3: góc MIQ=90 độ-góc MNI
góc MQI=góc NQK=90 độ-góc PNI
mà góc MNI=góc PNI
nên góc MIQ=góc MQI
=>ΔMIQ cân tại M
4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có
IM=IE
góc MIF=góc EIP
=>ΔIMF=ΔIEP
=>MF=EP
Xét ΔNFP có NM/MF=NE/EP
nên ME//FP
cho tam giác ABC vuông tại A có AB<AC và đường cao AH.Gọi M là trung điểm cạnh AC và K là hình chiếu của A trên BM
a) Qua C kẻ đường thẳng song song với AB cắt đường thẳng AK tại L.Chứng minh LH=LC
b) Trung trực của BK cắt đường thẳng CL tại D. Chứng minh rằng DK=DC
cho tam giác MNP vuông tại M có cạnh MN<MP. Vẽ đường cao MH, từ H kẻ HL vuông gác với MN tại L. Trên tia HL lấy điểm K sao cho L là trung điểm của HK (vẽ hình giúp mình :((( )
a) Chứng Minh tam giác MHL= tam giác MKL
b) Chứng minh tam giác MKN là tam giác vuông
c) Hãy so sánh các cạnh của tam giác MKN
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó; ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
hay ΔMKN vuông tại K
Cho tam giác MNP vuông M có cạnh MN<MP. Vẽ đường cao MH, từ H kẻ HL vuông góc với MN tại L. trên tia HL lấy điểm K sao cho L là trung điểm của HK
a) Chứng minh tam giác MHL= tam giác MKL
b) Chứng minh tam giác MKN là tam giác vuông
c) Hãy so sánh các cạnh của tam giác MKN
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
Hình tự vẽ !~ Vì \(\Delta EFG\) vuông tại E \(\Rightarrow\widehat{E}=90^0\)
Xét \(\Delta EFG\) có \(\widehat{E}=90^0\Rightarrow EF^2+EG^2=FG^2\left(ĐLPytago\right)\)
\(\Rightarrow EG^2=FG^2-EF^2=20^2-12^2=400-144=256=16^2\Rightarrow EG=16\left(cm\right)\)
Có diện tích tam giác ABC : \(S_{ABC}=\frac{1}{2}EF.EG=\frac{1}{2}EH.FG\)
\(\Rightarrow EF.EG=EH.FG\Leftrightarrow EH=\frac{EF.EG}{FG}=\frac{12.16}{20}=9,6\left(cm\right)\)
cho tam giác abc vuông tại a. Đường cao AH. Gọi E,F lần lượt là chân đường vuông góc hạ từ H xuống AB và AC. Kẻ trung tuyến AM của tam giác ABC. Chứng minh rằng AM vuông góc với EF