Cho a,b,c > 0 có a+b+c=1
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
cho 3 số thực dương a b c thỏa mãn a + b + c = a\(^3\) + b\(3\) + c\(^3\)= 0. chứng minh rằng trong 3 số a,c,b có ít nhất có 1 số bằng 0
Từ a+b+c=0 => b+c=-a
Theo đề ra ta có a3 + b3 + c3 = 0
=> a3 + (b+c)(b2 - bc + c2 )=0
<=> a3- a[(b + c )2 -3bc]= 0
<=> a3- [( -a )2 - 3bc] = 0
<=> a3 - a3 +3bc = 0
<=> 3bc= 0
<=> a =0 hoặc b=0 hoặc c=0 ( đpcm)
cho mik điểm nha bạn ơiii
Cho a,b,c đôi 1 khác nhau thỏa mãn : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0. Cmr trong ba số a,b,c phải có 1 số âm, 1 số dương
Bài này mà không làm đc đốt sách đê
ê cu vô cái link này nè http://olm.vn/hoi-dap/question/94896.html tui vừa chép xong
ooooooooooooooooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooo
Cho a,b,c > 0 ; a+b+c ≤ 1. Tìm GTNN của P= a+b+c+1/a+1/b+1/c
(Nếu có thể dùng Cosi giúp mình nhé.)
`P=a+b+c+1/a+1/b+1/c`
`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`
Áp dụng BĐT cosi:
`a+1/(9a)>=2/3`
`b+1/(9b)>=2/3
`c+1/(9c)>=2/3`
Áp dụng BĐT cosi schwart
`1/a+1/b+1/c>=9/(a+b+c)>=9`
`<=>8/9(1/a+1/b+1/c)>=8`
`=>P>=2/3+2/3+2/3+8=10`
Dấu "=" xảy ra khi `a=b=c=1/3`
Nãy ghi nhầm :v
`P=a+b+c+1/a+1/b+1/c`
`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`
Áp dụng BĐT cosi:
`a+1/(9a)>=2/3`
`b+1/(9b)>=2/3`
`c+1/(9c)>=2/3`
Áp dụng BĐT cosi schwart
`1/a+1/b+1/c>=9/(a+b+c)>=9`
`<=>8/9(1/a+1/b+1/c)>=8`
`=>P>=2/3+2/3+2/3+8=10`
Dấu "=" xảy ra khi `a=b=c=1/3`
cho a b c thỏa mãn a/(b-c) + b/(c-a) + c/(a-b) = 0. CMR trong 3 số a b c có 1 số âm 1 số dương
Cho a/c=a-b/b-c (a,c khác 0. a-b khác 0; b-c khác 0).CMR 1/a + 1/a-b=1/b-c -1/c
\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)
\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)
Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM
Cho a; b; c khác 0 và a.b.c=1; a+b+c>(1/a)+(1/b)+(1/c) CMR: Trong 3 số a, b, c có đúng 1 số dương.
Dề sai thế \(a=\frac{1}{3};b=5;c=\frac{3}{5}\)vô đi nhé.
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....
Cho abc khác 0 và a+b-c/c =b+c-a/a=c+a-b/b
Tính P =(1+b/a)(1+c/b)(1+a/c)
(có hai kết quả)
Ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+) TH1: Nếu a + b + c = 0 \(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Lại có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=-1\)
+) TH2: a + b + c ≠ 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó: \(\hept{\begin{cases}\frac{a+b}{c}=2\\\frac{b+c}{a}=2\\\frac{c+a}{b}=2\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=2.2.2=8\)
Vậy....