Chứng minh rằng
A=1/2 - 2/2^2 + 3/2^3 - 4/2^4 + ...99/2^99 - 100/2^100 < 2/9
chứng minh rằng A=1\2-2\2^2+3\2^3-4\2^4+.......+99\2^99-100\2^100<2\9
ai đúng mình lik cho nha
Chứng minh rằng A=1/2-2/22+3/23-4/24+.....+99/299-100/2100<2/9
A=1/2-2/2+3-4/2+....+99/2 -100/2
Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)
chứng minh rằng:
A=1/2-2/22+3/23-4/24+...+99/299-100/2100<2/9
chứng minhA=1/2-2/2^2+3/2^3-4/2^4+...+99/2^99-100/2^100<2/9
\(\frac{1}{2}-\frac{-2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+\frac{4}{2^5}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}< \frac{2}{9}\)
Chứng minh
xem lại xem có sai đề bài không bạn ơi, sai thì sửa lại nhé
Chứng minh rằng : A= \(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+....+\frac{99}{2^{99}}-\frac{100}{2^{100}}< \frac{2}{9}\)\(\frac{2}{9}\)
chứng minh rằng :
\(A=\frac{1}{2}-\frac{2}{^{2^2}}+\frac{3}{2^3}-\frac{4}{2^4}+.....+\frac{99}{2^{99}}-\frac{100}{2^{100}}<\frac{2}{9}\)
Chứng minh rằng:
\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}<\frac{2}{9}\)