Chứng tỏ rằng với n thuộc N, n khác 0
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
chứng tỏ rằng với n thuộc N,n khác 0 thì
\(\frac{1}{n\left(n+1\right)}\)=\(\frac{1}{n}-\frac{1}{n+1}\)
Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
Vậy \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
chứng tỏ rằng với n thuộc N ,n khác 0 thì :
\(\frac{1}{n\left(n+1\right)}\)=\(\frac{1}{n}\)_ \(\frac{1}{n+1}\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
với n thuộc N* hãy chứng tỏ rằng :
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(\frac{1}{n\left(n+1\right)}\)=\(\frac{1}{n}\)- \(\frac{1}{n+1}\)chứng tỏ rằng n thuộc N , n ko thuộc 0
Chứng tỏ rằng n thuộc N , n khác 0 thì
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng câu trên tính nhanh;
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
chứng minh rằng n thuộc N,n khác 0 thì
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\) (đpcm)
Ta có :
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{1}{n.\left(n+1\right)}\)
\(=\frac{1}{n.\left(n+1\right)}\)
Tham khảo nha !!!
ko chép cách giải
tự làm ko được chép giải
chứng tỏ rằng với mọi n thuộc N* ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)
\(=\frac{n}{2\left(3n+2\right)}\)
Chứng tỏ rằng với mọi n thuộc N* ta có :\(\frac{1}{2x5}\)+\(\frac{1}{5x8}\)+...+\(\frac{1}{\left(3n-1\right)x\left(3n+2\right)}\)=\(\frac{n}{2x\left(3n+2\right)}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)
CHứng minh rằng với n thuộc N* và n < 100 thì \(\frac{n}{\left(n+1\right)!}+\frac{n}{\left(n+2\right)!}+\frac{n}{\left(n+3\right)!}+.....+\frac{n}{100!}< \frac{1}{n!}\)1/n! . Lưu ý n!=1.2.3....n
ae giúp mik vs nha