CHỨNG MINH RẰNG 3^(X+1)+3^(x+2)+...........+3^(X+100) CHIA HẾT CHO 120 VỚI X THUỘC SỐ TỰ NHIÊN
Chứng minh rằng: \(3^{x+1}+3^{x+2}+3^{x+3}+....+3^{x+100}\)chia hết cho 120 ( với x là số tự nhiên )
Gọi tổng \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)là A, ta có :
\(A=3^x\times3+3^x\times3^2+3^x\times3^3+...+3^x\times3^{100}\)
\(=3^x\left[3^0\left(3+3^2+3^3+3^4\right)\right]+...+3^x\left[3^{96}\left(3+3^2+3^3+3^4\right)\right]\)
\(=3^x\left[3^0\left(3+9+27+81\right)\right]+...+3^x\left[3^{96}\left(3+9+27+81\right)\right]\)
\(=3^x\left(3^0\times120\right)+...+3^x\left(3^{96}\times120\right)\)
\(=3^x\times3^0\times120+...+3^x\times3^{96}\times120\)
\(=120\left[3^x\left(3^0+...+3^{96}\right)\right]⋮120\)
Vậy A chia hết cho 120
Chứng minh:3x+1+3x+2+3x+3+...+3x+100 chia hết cho 120, (số đó là một số tự nhiên)
a) Chứng minh rằng: 3^x+1+3^x+2+3^x+3+....+3^x+100 chia hết cho 120 với mọi x
$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$
Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
Chứng minh rằng số tự nhiên A chia hết cho 101 với
A = 1 x 2 x 3 x ... x 100 x ( 1 + \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ ... + \(\frac{1}{100}\))
\(A=1\cdot2\cdot3\cdot...\cdot100\cdot\left(\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{98}\right)+...+\left(\frac{1}{50}+\frac{1}{51}\right)\right)\) \(=1\cdot2\cdot3\cdot...\cdot100\cdot\left(\frac{101}{100}+\frac{101}{2\cdot99}+\frac{101}{3\cdot98}+...+\frac{101}{50\cdot51}\right)\)
\(=1\cdot2\cdot3\cdot...\cdot100\cdot101\cdot\left(\frac{1}{100}+\frac{1}{2\cdot99}+\frac{1}{3\cdot98}+...+\frac{1}{50\cdot51}\right)\)
vì \(101⋮101\Rightarrow A⋮101\)
A=1⋅2⋅3⋅...⋅100⋅((1+1100)+(12+199)+(13+198)+...+(150+151))A=1⋅2⋅3⋅...⋅100⋅((1+1100)+(12+199)+(13+198)+...+(150+151)) =1⋅2⋅3⋅...⋅100⋅(101100+1012⋅99+1013⋅98+...+10150⋅51)=1⋅2⋅3⋅...⋅100⋅(101100+1012⋅99+1013⋅98+...+10150⋅51)
=1⋅2⋅3⋅...⋅100⋅101⋅(1100+12⋅99+13⋅98+...+150⋅51)=1⋅2⋅3⋅...⋅100⋅101⋅(1100+12⋅99+13⋅98+...+150⋅51)
vì 101⋮101⇒A⋮101
Chứng minh
\(3^{x+1}+3^{x+2}+3^{x+3}+.......+3^{x+100
}\)Chia hết cho 120
x thuộc N
=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...
=3^x.120+(3^x+4).120+...
=120(3^x+3^x+4...) chia hết cho 120
=>x^3+1...(đề bài) chia hết cho 120
(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)
Nhớ k cho mk đó!
Bài 1: Tìm các số tự nhiên x biết
a) 76 - 6(x-1) = 10
b) 3.4^3 - 7 - 185
c) 5x + 15 chia hết cho x + 2.
Bài 3: Cho D = 6 + 6^2 + 6^3 + 6^4 +...+ 6^120 . Chứng minh D chia hết cho 7. Chia hết cho 43
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3
Bài 1:
a) 76 - 6 (x - 1) = 10
6 (x - 1) = 76 - 10
6 (x - 1) = 66
x - 1 = 66 : 6
x - 1 = 11
x = 11 + 1
x = 12
b) 3 . 43 - 7 - 185
= 3 . 64 - 7 - 185
= 192 - 7 - 185
= 185 - 185
= 0
Chứng minh rằng 3x+1 + 3x+2 + 3x+3 +... + 3x+100 chia hết cho 120(với x thuộc N)
3x . 3 + 3x . 32 + 3x . 33 +....+ 3x . 3100
3x (3 + 32 + 33 + 34) + 3x + 4 (3 + 32 + 33 + 34) + ....+ 3x + 96 (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . 120 chia hết cho 120 (đpcm)
Chứng minh:3x+1+3x+2+3x+3+...+3x+100 chia hết cho 120 (x thuộc N)