So sánh : A= 100100 +1 / 10099+1 với B = 10098 +1 / 10097 +1
2. So sánh M và N M= 100100 + 1/ 10099 +1 N= 100101 +1/ 100100+1
So sánh:
a ) A = 17 18 + 1 17 19 + 1 v à B = 17 17 + 1 17 18 + 1 ; b ) C = 100 100 + 1 100 90 + 1 v à D = 100 99 + 1 100 89 + 1 ;
1. So sánh A và B biết : A = 20192019+120192020+1 ; B =20192018+120192019+1
2.So sánh M và N biết: M = 100100+110099+1 ; N= 100101+1100100+1
Hiện tại mình đang cần gấp giúp mk nha!
VÌ 20192019+120192020 +1=140384040 >20192018+120192019 =140384038 nên A>B
Cho
A=1/2x2+1/3x3+1/4x4+...1/2009×2009
A, so sánh A với 1. B, so sánh A với 3/4
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}\)
\(\dfrac{1}{2.2}< \dfrac{1}{1.2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3.3}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4.4}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{2009.2009}< \dfrac{1}{2008.2009}=\dfrac{1}{2008}-\dfrac{1}{2009}\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1\)
Ta có:
\(\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+\dfrac{1}{4\times4}+...+\dfrac{1}{2009\times2009}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2008\times2009}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)
GIÚP MÌNH VỚI CÁC BẠN ƠI !
BÀI 1:
Cho A =1/5+1/5^2+1/5^3+...+1/5^99+1/5^100
a.Tính A?
So sánh A với 1/4
BÀI 2 :
So sánh :
a. A=9/a^2014+7/a^2014 và B=8/a^2014+8/a^2013 với A thuộc N*
b . So sánh A và B với A=10^2009+1/10^2010+1 và B=10^2010+1/10^2011+1
c . So sánh A=10^2016+1/ 10^2015+1 ; B=10^2015+1/10^2014+1
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
Cho A = 1/2×2+1/3×3+1/4×4+...+1/2012×2012
a)so sánh A với 1
b)so sánh A với 3/4
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha
Cho A=1/2*2+1/3*3+1/4*4+...+1/2011*2011
a)So Sánh A với 1
B)so sánh A với 3/4
Bài 1 : Cho biểu thức
a) B = 1/2 + 1/4 +1/6 + ......... + 1/60 . So sánh B với 15
b) c = 1 + 1/4 + 1/7 + 1/10 + .............+ 1/31 .So sánh C với 12
a/ so sánh 199 mũ 20 với 100 mũ 24
b/so sánh A=10 mũ 15+1 trên 10 mũ 6+1 với B=10 mũ 16+1 trên 10 mũ 17+1
a
nAK.DNX. 0pwi9dOjkciopjopoijasd
Cho A = \(\dfrac{n^9+1}{n^{10}+1}\) và B = \(\dfrac{n^8+1}{n^9+1}\) trong đó n\(\in\)N; n>1. Hãy so sánh nghịch đảo của A và B rồi so sánh A với B
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B