Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quỳnh nga
Xem chi tiết
lã huyền như
Xem chi tiết
I - Vy Nguyễn
15 tháng 3 2020 lúc 20:50

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

Khách vãng lai đã xóa
I - Vy Nguyễn
15 tháng 3 2020 lúc 20:58

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

Khách vãng lai đã xóa
I - Vy Nguyễn
15 tháng 3 2020 lúc 21:13

 Xin lỗi , xin lỗi lúc nãy tớ viết vội quá nên râu ông nọ cắm cằm bà kia . Bây giờ sửa lại ý a) 

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\( \implies\) \(b\sqrt{2}=a\)

\( \implies\) \(b^2.2=a^2\)

\( \implies\) \(a^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố 

\( \implies\) \(a\) chia hết cho \(2\)

\( \implies\) \(a^2\) chia hết cho \(4\)

\( \implies\)  \(b^2.2\) chia hết cho \(4\)

\( \implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố nên suy ra \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sử sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

Khách vãng lai đã xóa
Tuấn Huỳnh Minh
Xem chi tiết
hoa
Xem chi tiết
Nguyễn Tú Nguyên
28 tháng 7 2017 lúc 21:32

cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự 

vì căn 2 là số vô tỉ 

vì cắn 3 là số vô tỉ 

và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ 

nguyễn đào hải dương
Xem chi tiết
Đặng Thị Thùy Dương
Xem chi tiết
Nguyễn Mạnh Cường
Xem chi tiết
Bùng nổ Saiya
Xem chi tiết
Nguyễn Hoài Oanh
13 tháng 8 2017 lúc 16:22

Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Bùng nổ Saiya
13 tháng 8 2017 lúc 16:28

sai rồi bạn ơi mik làm đc rồi

Hiền Ngố
Xem chi tiết
Akai Haruma
31 tháng 7 lúc 13:02

Lời giải:
Giả sử $\sqrt{7}\in\mathbb{Q}$. Đặt $\sqrt{7}=\frac{a}{b}$ với $a,b$ nguyên, $b\neq 0$, $(a,b)=1$.

Ta có:

$7=\frac{a^2}{b^2}$

$\Rightarrow a^2=7b^2\vdots 7\Rightarow a\vdots 7\Rightarrow a^2\vdots 49$

$\Rightarrow 7b^2=a^2\vdots 49\Rightarrow b^2\vdots 7$

$\Rightarrow b\vdots 7$

Vậy $7=ƯC(a,b)$ (trái với điều kiện $(a,b)=1$)

Do đó điều giả sử là sai. Tức là $\sqrt{7}$ là số vô tỉ.