Cho \(G=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{16}\right)\left(1+\frac{1}{256}\right)...\left(1+\frac{1}{2^{1024}}\right)\)và \(H=\frac{1}{2^{2047}}\)
Tính \(G+H\)
1.Cho G= \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2^{1024}}\right)\)và H=\(\frac{1}{2^{2047}}\)Tính G+H
cho \(G=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2^{1024}}\right)\)và \(H=\frac{1}{2^{2047}}\). Tính G+H
Cho \(G=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2^{1024}}\right)\)và \(H=\frac{1}{2^{2047}}\). Tính G+H
cho \(G=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2^{1024}}\right)\)và \(H=\frac{1}{2^{2047}}\). Tính G+H
CHO \(G=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{16}\right)+\left(1+\frac{1}{256}\right)+...+\left(1+\frac{1}{2^{1020}}\right)\)
\(H=\frac{1}{2^{2047}}\) .Tính\(G+H\)
cho G = \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)+\left(1+\dfrac{1}{256}\right)......\left(1+\dfrac{1}{2^{1024}}\right)\)và H = \(\dfrac{1}{2^{2047}}\)
Tính G + H
Tính :
a) \(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right)...\left(1-\frac{1}{780}\right)\)
b) \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{512}\right)+\left(1-\frac{1}{1024}\right)\)
BÀI 2 : Tính
a) \(\left(-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{h}\right)\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right).....\left(1+\frac{1}{h}\right)\)
c) \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\)
tính G=\(\frac{\left(1+\frac{1015}{1}\right)\left(1+\frac{1015}{2}\right)\left(1+\frac{1015}{3}\right)...\left(1+\frac{1015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1015}\right)}\)