Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Chứng Minh: Với mọi số tự nhiên n thì an=n(n+1)(n+2)(n+3)+1 là số chính phương
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Bài toán 1 : Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Chứng minh với mọi số tự nhiên thì A= n(n+1)(n+2)(n+3)+1 là số chính phương
Chứng minh với mọi số tự nhiên thì A=n(n+1)(n+2)(n+3)+1 là số chính phương
Bài 1: Chứng minh với mọi số tự nhiên n thì a = n(n + 1)(n + 2)(n + 3) + 1 là số
chính phương.
a= [n(n+3][(n+1)(n+2)]+1
a=[n^2+3n][n^2+3n+2]+1
ĐẶt n^2+3n+1=b( b thuộc Z)
=> a=(b-1)(b+1)+1
=> a=b^2-1+1
=> a=b^2
=> a=(n^2+3n+1)^2
Mà n là số tự nhiên => n^2+3n+1 là số nguyên => a là số chính phương
T i ck nha
a=n(n+1)(n+2)(n+3)+1
=(n2+3n)(n2+3n+2)+1
Đặt n2+3n+1=m(m thuộc N*)
=>a= (m-1)(m+1)+1=m2
Vậy...................
Ta có:\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(n^2+3n=t\) khi đó ta có:
\(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là số chính phương
Chứng minh rằng với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương
Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
Đặt \(n^2+3=t\)
=> \(A=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
=> A là số chính phương
Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
Chứng minh với mọi số tự nhiên n thì n2 + n + 1 không thể là số chính phương.
Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9
Giả sử n2+n+1 chia hết cho 9
<=> n2+n+1=9k (k thuộc N)
<=> n2+n+1-9k=0 (1)
\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)
Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên
Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương
Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha