Chứng minh tổng các số tự nhiên liên tiếp từ 1 đến 2005 không phải là số chính phương.
Trả lời giúp mình với nhé ^.^
Chứng minh tổng các số tự nhiên liên tiếp từ 1 đến 2005 không phải là số chính phương.
THANK YOU VERY MUCH !!!
CMR tổng các số tự nhiên liên tiếp từ 1 đến 2005 không phải là số chính phương
Giúp mình nhé mai nộp rồi
Ta có:
1+2+3+...+2005=(2005+1).2005:2≡2006.2005:2
≡1003.2005≡3.1≡3
(mod 4)
Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k thuộc N) nên không là số chính phương (đpcm).
1. Chứng minh tổng các số tự nhiên liên tiếp từ 1 đến 2005 không phải là số chính phương.
2. Chứng minh số : n = 20044 + 20043 + 20042 + 23 không là số chính phương.
3.Chứng minh số : n = 44 + 4444 + 444444 + 44444444 + 15 không là số chính phương.
4.Chứng minh số 4014025 không là số chính phương.
chứng minh tổng các số tự nhiên từ 1 đến 2005 không là số chính phương
bài 1:
Ta có:
1+2+3+...+2005≡(2005+1).2005:2≡2006.2005:2
≡1003.2005≡3.1≡3
(mod 4)
Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k∈N) nên không là số chính phương (đpcm)
Đây là toán lớp 7 mạ
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )
Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)
Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )
Chứng minh rằng tổng các số tự nhiên từ 1 đến 2005 không là số chính phương
chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không phải số chính phương
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
đpcm
Gọi 5 số tự nhiên liên tiếp là \(n-2;n-1;n;n+1;n+2\)
Đặt tổng bình phương của chúng là \(A=\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)
\(=5n^2+10=5.\left(n^2+2\right)\)
n2 có tận cùng là 3 hoặc 8 \(\Rightarrow\) n2 + 2 có tận cùng là 5 hoặc 0 \(\Rightarrow\) n2 + 2 chia hết cho 5.
\(\Rightarrow\) 5.(n2 + 2) chia hết cho 25 \(\Rightarrow\) A không phải số chính phương.
chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không phải số chính phương
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.