Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trà My
Xem chi tiết
Thanh Hằng Nguyễn
26 tháng 8 2017 lúc 14:14

Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)

\(\Leftrightarrow B>A\)

Duc Huy Doan
Xem chi tiết
phạm văn quyết tâm
Xem chi tiết
bùi nhật ninh
28 tháng 3 2018 lúc 20:40

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

maivananh
Xem chi tiết
Lê Thị Lệ Thúy
Xem chi tiết
Ngo Tung Lam
18 tháng 3 2018 lúc 20:04

Ta có :

\(A=\frac{10^{2016}+1}{10^{2015}+1}=\frac{\left(10^{2016}+1\right).10}{\left(10^{2015}+1\right).10}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10^{2017}+10}{10^{2016}+10}\)

Vì \(10^{2017}=10^{2017}\)\(10>1\)nên \(10^{2017}+10>10^{2017}+1\)( 1 )

Vì \(10^{2016}=10^{2016}\)và \(10>1\)nên \(10^{2016}+10>10^{2016}+1\)( 2 )

Từ ( 1 ) và ( 2 ) , suy ra : \(\frac{10^{2017}+10}{10^{2016}+10}>\frac{10^{2017}+1}{10^{2016}+1}\)

Vậy \(A>B\)

NGuyễn Ngọc Hạ Vy
18 tháng 3 2018 lúc 20:16

\(B=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10^{2016}+1+9}{10^{2017}+1+9}=\frac{10^{2016}+10}{10^{2017}+10}=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}=\frac{10^{2015}+1}{10^{2016}+1}\)

lm tương tự vs B ta có 

\(A=\frac{10^{2015}+1}{10^{2014}+1}\)

suy ra A>B

Bùi Hồng Anh
18 tháng 3 2018 lúc 20:28

Ta có: A=\(\frac{10^{2016}+1}{10^{2015}+1}\)

=>\(\frac{1}{A}=\frac{10^{2015}+1}{10^{2016}+1}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2016}+10}{10\left(10^{2016}+1\right)}=\frac{10^{2016}+1+9}{10\left(10^{2016}+1\right)}\)

           \(=\frac{1}{10}+\frac{9}{10^{2017}+10}\)

         \(B=\frac{10^{2017}+1}{10^{2016}+1}\)

=>\(\frac{1}{B}=\frac{10^{2016}+1}{10^{2017}+1}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2017}+10}{10\left(10^{2017}+1\right)}\)

           \(=\frac{10^{2017}+1+9}{10\left(10^{2017}+1\right)}=\frac{1}{10}+\frac{9}{10^{2018}+10}\)

\(10^{2017}< 10^{2018}=>10^{2017}+10< 10^{2018}+10\)

\(=>\frac{9}{10^{2017}+10}>\frac{9}{10^{2018}+10}=>\frac{1}{10}+\frac{9}{10^{2017}+10}>\frac{1}{10}+\frac{9}{10^{2017}+10}\)

\(=>\frac{1}{A}>\frac{1}{B}=>A< B\)

rororonoazoro
Xem chi tiết

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

Nguyễn Bá Hùng
Xem chi tiết
Nguyễn Văn Hưởng
7 tháng 1 2018 lúc 17:35

Ta có :  \(A=\frac{10^{2016}+1}{10^{2017}+1}\) 

Suy ra  \(10A=\frac{10^{2017}+10}{10^{2017}+1}\) 

Suy ra  \(10A=1+\frac{9}{10^{2017}+1}\) 

Ta lại có : \(B=\frac{10^{2017}+1}{10^{2018}+1}\) 

Suy ra : \(10B=\frac{10^{2018}+10}{10^{2018}+1}\) 

Suy ra : \(10B=1+\frac{9}{10^{2018}+1}\) 

Vì  \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\) 

Nên  \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\) 

Suy ra \(10A>10B\) 

Suy ra \(A>B\)

ST
7 tháng 1 2018 lúc 17:26

\(B< \frac{10^{2017}+1+9}{10^{2018}+1+9}=\frac{10^{2017}+10}{10^{2018}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2016}+1}{10^{2017}+1}=A\)

vậy A > B

Nguyễn Đức Hiền
Xem chi tiết
Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa

Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Tường đây

Phùng Minh Quân
15 tháng 3 2018 lúc 20:18

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\) \(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2018}+1}{10^{2017}+1}>\frac{10^{2018}+1+9}{10^{2018}+1+9}=\frac{10^{2018}+10}{10^{2018}+10}=\frac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2017}+1}{10^{2016}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Quách Trung Kiên
Xem chi tiết