Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Ngân
Xem chi tiết
lê thị hương giang
Xem chi tiết
lê thị hương giang
5 tháng 12 2016 lúc 18:25

Ta có :

| x - 2012 | + | x - 2013 | = | x - 2012 | + | 2013 - x | \(\ge\) | x - 2012 + 2013 - x | = 1

Vậy Mmin = 1 khi 2012 \(\le x\le2013\)

Nguyễn Huy Tú
5 tháng 12 2016 lúc 18:45

Ta có: \(M=\left|x-2012\right|+\left|x-2013\right|\ge\left|2012-x\right|+\left|x-2013\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(M\ge\left|2012-x\right|+\left|x-2013\right|\ge\left|2012-x+x-2013\right|=\left|2012-2013\right|=1\)

Dấu " = " xảy ra khi \(2012-x\ge0;x-2013\ge0\)

\(\Rightarrow x\le2012;x\ge2013\)

\(\Rightarrow2012\le x\le2013\)

Vậy \(MIN_M=1\) khi \(2012\le x\le2013\)

 

 

Phạm Nguyễn Tất Đạt
5 tháng 12 2016 lúc 20:41

Ta có:\(M=\left|x-2012\right|+\left|x-2013\right|=\left|x-2012\right|+\left|2013-x\right|\)

\(\Rightarrow M\ge\left|x-2012+2013-x\right|\)

\(\Rightarrow M\ge1\)

Vậy MINm=1 khi \(2012\le x\le2013\)

 

Thánh VĂn Troll
Xem chi tiết
Phạm Trần Minh Ngọc
1 tháng 2 2017 lúc 15:38

giá trị nhỏ nhất = 1

Thánh VĂn Troll
1 tháng 2 2017 lúc 15:39

rõ hơn đi bạn

Đinh Đức Hùng
1 tháng 2 2017 lúc 15:40

B = |2012 - x| + |2013 - x| = |2012 - x| + |x - 2013|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

B = |2012 - x| + |x - 2013| ≥ |2012 - x + x - 2013| = |- 1| = 1

Dấu "=" xảy ra <=> (2012 - x)(x - 2013) ≥ 0 <=> 2012 ≤ x ≤ 2013

Vậy gtnn của B là 1 <=> 2012 ≤ x ≤ 2013

Đinh Khánh Linh
Xem chi tiết
Nguyễn Văn Hiếu
17 tháng 3 2016 lúc 19:36

có phải giá trị tuyệt đối ko

Nguyễn Văn Hiếu
17 tháng 3 2016 lúc 19:37

là 1 đấy

Yasuo
Xem chi tiết
Yasuo
Xem chi tiết
vu phuong linh
Xem chi tiết
Xyz OLM
25 tháng 3 2020 lúc 6:33

Ta có : P = |x - 2012| + |x - 2013| = |x - 2012| + |2013 - x| \(\ge\)|x - 2012 + 2013 - x| = 1 

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\2013\ge x\end{cases}\Rightarrow}\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)

Vậy Min P = 1 <=> \(2012\le x\le2013\)

Khách vãng lai đã xóa
phạm văn minh
27 tháng 3 2020 lúc 14:31

ta có p=/x-2012/+/x-2013/

=>p=/x-2012/+/2013-x/

ÁP DỤNG BẤT Đẳng THỨC /A/+/B/>,=/A+B/

=>/x-2012/+/2013-x/>=/x-2012+2013-x/=1

hay p>=1

dấu bằng xảy ra khi và chỉ khi /x-2012/x/2013-x/>=0

xét x-2012=0=>x=2012

2013-x=0=>x=2013

lập bảng xét dấu các giá trị của biểu thức x-2012 và 2013-x

x 2012 2013 
x-2012-0+/+
2013-x+/+0-
(x-2012)*(2013-x)-0+0-

=>2012=<x<=2013

vậy gtnn của p là 1 khi và chỉ khi 2012=<x=<2013

Khách vãng lai đã xóa
Nguyen tuan cuong
Xem chi tiết
Lê Tài Bảo Châu
12 tháng 1 2020 lúc 23:52

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)

Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)

\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2011\le x\le2015\)

Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)

\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2012\le x\le2014\)

Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)

                      \(\Leftrightarrow x=2013\)

Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)

Hay \(A\ge6\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)

Vậy \(A_{min}=6\Leftrightarrow x=2013\)

Khách vãng lai đã xóa
nguyễn đình tú
Xem chi tiết
Quỳnh Chi
12 tháng 3 2020 lúc 13:49

Áp dụng BĐT |a|+|b|≥|a+b| ta có:

P=|x−2012|+|x−2013|

=|2012−x|+|x−2013

≥|2012−x+x−2013|=1

Đẳng thức xảy ra khi 2012≤x≤2013

Vậy với 2012≤x≤2013 thì PMin=1

Khách vãng lai đã xóa
nguyễn đình tú
12 tháng 3 2020 lúc 14:04

AI GIÚP MIK VỚI

Khách vãng lai đã xóa