2+2^2+2^3+2^4+...+2^2017+2^2018
giúp nha
1/2+1/3+1/4+...+1/2018
giúp tôi, cảm ơn!
số số hạng của mẫu dãu số :
`(2018 - 2) : 1 + 1= 2017(số hạng)`
tổng mãu dãu trên là :
` (2018 + 2) xx 2017 : 2 = 2037170`
=> `1/2 + 1/3 + 1/4 + ... + 1/2018 = 1/2037170`
Tính tổng:
a) S = 1 + 2 + 2^2 + 2^3 +.........+ 2^2017
b) 3 + 3^2 + 3^3 + .........+ 3^2017
c) 4 + 4^2 + 4^3 + .........+ 4^2017
3 bạn làm xong nhanh nhất thì mik sẽ tick cho nha :D
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
1^2-2^2+3^2-4^2 ... -2016^2+2017^2 tinh nhanh nha
Đặt A=1^2-2^2+......-2016^2+2017^2
-A=2^2-1^2+........+2016^2-2015^2
ÁP dụng A^2-B^2=(A+B)(A-B)
sau đó bạn sẽ tính được A
chứng minh 1/4 <1/5 +2/5^2 + 3/5^3 + 4/5^4 + ... + 2017/5^2017 < 1/3
giúp mik nha
thục hiện phép tính: (1/2+1/3+1/4+.....+1/2017+1/2018)/(2017/1+2016/2+2015/3+.....+2/2016+1/2017)
Các bạn giúp mình nha ! Thank you very much :)
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
Tính A=1+12^2+1/2^3+1/2^4+....+1/2^2017
Giúp mình với nha !!^_^
Bài này khó quá mk ko bit làm các bạn chỉ giùm nha
S=2^1+2^2+2^3+2^4+...+2^2017+2^2018
Bạn nào bit chỉ mk nha
2S=2.(2^1+2^2+2^3+2^4+...+2^2017+2^2018)=2^2+...............2^2019
2S-S=2^2+...............2^2019-(2^1+2^2+2^3+2^4+...+2^2017+2^2018)
S=2^2019-2
\(S=2^1+2^2+2^3+2^4+..+2^{2017}+2^{2018}\)
\(S=2^{2018}+2^{2017}+....+2^4+2^3+2^2+2^1\)
\(2S=2^{2019}+2^{2018}+....+2^5+2^4+2^3+2^2\)
\(\Rightarrow2S-S=2^{2019}-2\)
hay \(S=2^{2019}-2\)
Giúp mình bài này nha mọi người
Cho tổng T = 2/2^1 + 3/2^2 + 4/2^3 + ... +2016/2^2015 + 2017/2^2016
So sánh T với 3
`Answer:`
\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)
\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)
\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)
Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)
`=>T<3`
M=3/1×2+3/2×3+3/3×4+...........+3/2015×2016+3/2016×2017
Giúp mk nhanh nha 😀
\(M=\dfrac{3}{1\times2}+\dfrac{3}{2\times3}+\dfrac{3}{3\times4}+...+\dfrac{3}{2015\times2016}+\dfrac{3}{2016\times2017}\)
\(=3\times\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2015\times2016}+\dfrac{1}{2016\times2017}\right)\)
\(=3\times\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=3\times\left(1-\dfrac{1}{2017}\right)\)
\(=3\times\dfrac{2016}{2017}\)
\(=\dfrac{6048}{2017}\)
#DatNe
Chứng minh rằng: 1.3+2/2^2+2.4+2/3^2+3.5+2/4^2+...+2010.2012+2/2011^2+2015.2017+2/2016^2<2017
Mình cần gấp lắm, cố xong trong hôm nay nha
Đặt A = \(\frac{1.3+2}{2^2}+\frac{2.4+2}{3^2}+\frac{3.5+2}{4^2}+...+\frac{2010.2012+2}{2011^2}+\frac{2015.2017+2}{2016^2}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+2}{2^2}+\frac{\left(3-1\right)\left(3+1\right)}{3^2}+...+\frac{\left(2016-1\right)\left(2016+1\right)+2}{2016^2}\)
\(=\frac{2^2-1+2}{2^2}+\frac{3^2-1+2}{3^2}+....+\frac{2016^2-1+2}{2016^2}\)
\(=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+...+\frac{2016^2+1}{2016^2}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}\right)\)(2015 hạng tử 1)
\(=2015+\left(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2016.2016}\right)\)
\(< 2015+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)
\(=2015+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)=2015+\left(1-\frac{1}{2016}\right)\)
= 2015 + 1 + 1/2016
= 2016 + 1/2016 < 2017
=> A < 2017 (ĐPCM)